2 resultados para pharmacy and therapeutics committee
em Indian Institute of Science - Bangalore - Índia
Resumo:
Japanese encephalitis (JE) is one of the most dreaded mosquito-borne viral encephalitis known to afflict humans. The Japanese encephalitis virus (JEV) is a neurotropic flavivirus that affects the CNS, causing extensive damage that may lead to fatality in about one third of bpatients. Half of the survivors suffer from severe neuropshychiatric sequelae. With nearly 3 billion people living under the current JE-endemic region, recurring incidents of epidemic are being reported at regular intervals. With no established antiviral therapies against JE available, vaccination has been the only way of preventing JE. Two types of JE vaccines are currently in vogue although the safety of administering them is questionable, in certain individuals. Thus, there is a need to develop a safe, affordable and potent JE vaccine and this review addresses the current efforts in this direction. This review also focuses on the pathophysiology of JE and efforts towards a possible breakthrough in anti-JEV therapy.
Resumo:
Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.