7 resultados para performance availability
em Indian Institute of Science - Bangalore - Índia
Resumo:
Monitoring of infrastructural resources in clouds plays a crucial role in providing application guarantees like performance, availability, and security. Monitoring is crucial from two perspectives - the cloud-user and the service provider. The cloud user’s interest is in doing an analysis to arrive at appropriate Service-level agreement (SLA) demands and the cloud provider’s interest is to assess if the demand can be met. To support this, a monitoring framework is necessary particularly since cloud hosts are subject to varying load conditions. To illustrate the importance of such a framework, we choose the example of performance being the Quality of Service (QoS) requirement and show how inappropriate provisioning of resources may lead to unexpected performance bottlenecks. We evaluate existing monitoring frameworks to bring out the motivation for building much more powerful monitoring frameworks. We then propose a distributed monitoring framework, which enables fine grained monitoring for applications and demonstrate with a prototype system implementation for typical use cases.
Resumo:
Distributed system has quite a lot of servers to attain increased availability of service and for fault tolerance. Balancing the load among these servers is an important task to achieve better performance. There are various hardware and software based load balancing solutions available. However there is always an overhead on Servers and the Load Balancer while communicating with each other and sharing their availability and the current load status information. Load balancer is always busy in listening to clients' request and redirecting them. It also needs to collect the servers' availability status frequently, to keep itself up-to-date. Servers are busy in not only providing service to clients but also sharing their current load information with load balancing algorithms. In this paper we have proposed and discussed the concept and system model for software based load balancer along with Availability-Checker and Load Reporters (LB-ACLRs) which reduces the overhead on server and the load balancer. We have also described the architectural components with their roles and responsibilities. We have presented a detailed analysis to show how our proposed Availability Checker significantly increases the performance of the system.
Resumo:
In this paper we introduce a nonlinear detector based on the phenomenon of suprathreshold stochastic resonance (SSR). We first present a model (an array of 1-bit quantizers) that demonstrates the SSR phenomenon. We then use this as a pre-processor to the conventional matched filter. We employ the Neyman-Pearson(NP) detection strategy and compare the performances of the matched filter, the SSR-based detector and the optimal detector. Although the proposed detector is non-optimal, for non-Gaussian noises with heavy tails (leptokurtic) it shows better performance than the matched filter. In situations where the noise is known to be leptokurtic without the availability of the exact knowledge of its distribution, the proposed detector turns out to be a better choice than the matched filter.
Resumo:
Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.
Resumo:
Interactions of major activities involved in airfleet operations, maintenance, and logistics are investigated in the framework of closed queuing networks with finite number of customers. The system is viewed at three levels, namely: operations at the flying-base, maintenance at the repair-depot, and logistics for subsystems and their interactions in achieving the system objectives. Several performance measures (eg, availability of aircraft at the flying-base, mean number of aircraft on ground at different stages of repair, use of repair facilities, and mean time an aircraft spends in various stages of repair) can easily be computed in this framework. At the subsystem level the quantities of interest are the unavailability (probability of stockout) of a spare and the duration of its unavailability. The repair-depot capability is affected by the unavailability of a spare which in turn, adversely affects the availability of aircraft at the flying-base level. Examples illustrate the utility of the proposed models.
Resumo:
We analyze the performance of an SIR based admission control strategy in cellular CDMA systems with both voice and data traffic. Most studies In the current literature to estimate CDMA system capacity with both voice and data traf-Bc do not take signal-tlFlnterference ratio (SIR) based admission control into account In this paper, we present an analytical approach to evaluate the outage probability for voice trafllc, the average system throughput and the mean delay for data traffic for a volce/data CDMA system which employs an SIR based admission controL We show that for a dataaniy system, an improvement of about 25% In both the Erlang capacity as well as the mean delay performance is achieved with an SIR based admission control as compared to code availability based admission control. For a mixed voice/data srtem with 10 Erlangs of voice traffic, the Lmprovement in the mean delay performance for data Is about 40%.Ah, for a mean delay of 50 ms with 10 Erlangs voice traffic, the data Erlang capacity improves by about 9%.
Resumo:
PurposeTo extend the previously developed temporally constrained reconstruction (TCR) algorithm to allow for real-time availability of three-dimensional (3D) temperature maps capable of monitoring MR-guided high intensity focused ultrasound applications. MethodsA real-time TCR (RT-TCR) algorithm is developed that only uses current and previously acquired undersampled k-space data from a 3D segmented EPI pulse sequence, with the image reconstruction done in a graphics processing unit implementation to overcome computation burden. Simulated and experimental data sets of HIFU heating are used to evaluate the performance of the RT-TCR algorithm. ResultsThe simulation studies demonstrate that the RT-TCR algorithm has subsecond reconstruction time and can accurately measure HIFU-induced temperature rises of 20 degrees C in 15 s for 3D volumes of 16 slices (RMSE = 0.1 degrees C), 24 slices (RMSE = 0.2 degrees C), and 32 slices (RMSE = 0.3 degrees C). Experimental results in ex vivo porcine muscle demonstrate that the RT-TCR approach can reconstruct temperature maps with 192 x 162 x 66 mm 3D volume coverage, 1.5 x 1.5 x 3.0 mm resolution, and 1.2-s scan time with an accuracy of 0.5 degrees C. ConclusionThe RT-TCR algorithm offers an approach to obtaining large coverage 3D temperature maps in real-time for monitoring MR-guided high intensity focused ultrasound treatments. Magn Reson Med 71:1394-1404, 2014. (c) 2013 Wiley Periodicals, Inc.