2 resultados para penaeus-esculentus
em Indian Institute of Science - Bangalore - Índia
Resumo:
Shrimp are among the more common causes of immediate hypersensitivity reactions to food. To characterize better the allergenic substances within shrimp, extracts from heated shrimp were systematically examined with solid-phase radioimmunoassay and sera from patients clinically sensitive to shrimp. Two heat-stable protein allergens, designated as Sa-I and Sa-II, were identified from boiled shrimp (Penaeus indicus) extracts. Sa-I was isolated by ultrafiltration, Sephadex G-25, and diethylaminoethyl-Sephacel chromatography, whereas Sa-II, the major allergen, was purified by successive chromatography on diethylaminoethyl-Sephacel, Bio-Gel P-200, and Sepharose 4B columns. Sa-I, which was homogeneous by polyacrylamide gel electrophoresis (PAGE), elicited a single band on sodium dodecyl sulfate-PAGE corresponding to a molecular weight of 8.2 kd. Sa-II was also found to be homogeneous by PAGE, crossed immunoelectrophoresis, and immunoblotting. On sodium dodecyl sulfate-PAGE, it elicited a single band with a molecular weight of 34 kd. Sa-II was found to contain 301 amino acid residues and was particularly rich in glutamate/glutamine and aspartate/asparagine. Solid-phase radioimmunoassay-inhibition studies revealed that Sa-I and Sa-II share 54% of the allergenic epitopes, suggesting that Sa-I may be a fragment of Sa-II.SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; MW, Molecular weight; BSA, Bovine serum albumin; DEAE, Diethylaminoethyl; SPRIA, Solid-phase radioimmunoassay; CIE, Crossed immunoelectrophoresis .
Resumo:
The major heat-stable shrimp allergen (designated as Sa-II), capable of provoking IgE-mediated immediate type hypersensitivity reactions after the ingestion of cooked shrimp, has been shown to be a 34-kDa heat- stable protein containing 300 amino acid residues. Here, we report that a comparison of amino acid sequences of different peptides generated by proteolysis of Sa-II revealed an 86% homology with tropomyosin from Drosophila melanogaster, suggesting that Sa-II could be the shrimp muscle protein tropomyosin. To establish that Sa-II is indeed tropomyosin, the latter was isolated from uncooked shrimp (Penaeus indicus) and its physicochemical and immunochemical properties were compared with those of Sa-II. Both tropomyosin and Sa-II had the same molecular mass and focused in the isoelectric pH range of 4.8 to 5.4. In the presence of 6 M urea, the mobility of both Sa-II and shrimp tropomyosin shifted to give an apparent molecular mass of 50 kDa, which is a characteristic property of tropomyosins. Shrimp tropomyosin bound to specific IgE antibodies in the sera of shrimp-sensitive patients as assessed by competitive ELISA inhibition and Western blot analysis. Tryptic maps of both Sa-II and tropomyosin as obtained by reverse phase HPLC were superimposable. Dot-blot and competitive ELISA inhibition using sera of shrimp-sensitive patients revealed that antigenic as well as allergenic activities were associated with two peptide fractions. These IgE-binding tryptic peptides were purified and sequenced. Mouse anti-anti-idiotypic antibodies raised against Sa-II specific human idiotypic antibodies recognized not only tropomyosin but also the two allergenic peptides, thus suggesting that these peptides represent the major IgE binding epitopes of tropomyosin. A comparison of the amino acid sequence of shrimp tropomyosin in the region of IgE binding epitopes (residues 50-66 and 153-161) with the corresponding regions of tropomyosins from different vertebrates confirmed lack of allergenic cross-reactivity between tropomyosins from phylogenetically distinct species.