15 resultados para peer to peer networks
em Indian Institute of Science - Bangalore - Índia
Resumo:
Peer to peer networks are being used extensively nowadays for file sharing, video on demand and live streaming. For IPTV, delay deadlines are more stringent compared to file sharing. Coolstreaming was the first P2P IPTV system. In this paper, we model New Coolstreaming (newer version of Coolstreaming) via a queueing network. We use two time scale decomposition of Markov chains to compute the stationary distribution of number of peers and the expected number of substreams in the overlay which are not being received at the required rate due to parent overloading. We also characterize the end-to-end delay encountered by a video packet received by a user and originated at the server. Three factors contribute towards the delay. The first factor is the mean shortest path length between any two overlay peers in terms of overlay hops of the partnership graph which is shown to be O (log n) where n is the number of peers in the overlay. The second factor is the mean number of routers between any two overlay neighbours which is seen to be at most O (log N-I) where N-I is the number of routers in the internet. Third factor is the mean delay at a router in the internet. We provide an approximation of this mean delay E W]. Thus, the mean end to end delay in New Coolstreaming is shown to be upper bounded by O (log E N]) (log N-I) E (W)] where E N] is the mean number of peers at a channel.
Resumo:
A new method of network analysis, a generalization in several different senses of existing methods and applicable to all networks for which a branch-admittance (or impedance) matrix can be formed, is presented. The treatment of network determinants is very general and essentially four terminal rather than three terminal, and leads to simple expressions based on trees of a simple graph associated with the network and matrix, and involving products of low-order, usually(2 times 2)determinants of tree-branch admittances, in addition to tree-branch products as in existing methods. By comparison with existing methods, the total number of trees and of tree pairs is usually considerably reduced, and this fact, together with an easy method of tree-pair sign determination which is also presented, makes the new method simpler in general. The method can be very easily adapted, by the use of infinite parameters, to accommodate ideal transformers, operational amplifiers, and other forms of network constraint; in fact, is thought to be applicable to all linear networks.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.
Resumo:
In this work, interference alignment for a class of Gaussian interference networks with general message demands, having line of sight (LOS) channels, at finite powers is considered. We assume that each transmitter has one independent message to be transmitted and the propagation delays are uniformly distributed between 0 and (L - 1) (L >; 0). If receiver-j, j ∈{1,2,..., J}, requires the message of transmitter-i, i ∈ {1, 2, ..., K}, we say (i, j) belongs to a connection. A class of interference networks called the symmetrically connected interference network is defined as a network where, the number of connections required at each transmitter-i is equal to ct for all i and the number of connections required at each receiver-j is equal to cr for all j, for some fixed positive integers ct and cr. For such networks with a LOS channel between every transmitter and every receiver, we show that an expected sum-spectral efficiency (in bits/sec/Hz) of at least K/(e+c1-1)(ct+1) (ct/ct+1)ct log2 (1+min(i, j)∈c|hi, j|2 P/WN0) can be achieved as the number of transmitters and receivers tend to infinity, i.e., K, J →∞ where, C denotes the set of all connections, hij is the channel gain between transmitter-i and receiver-j, P is the average power constraint at each transmitter, W is the bandwidth and N0 W is the variance of Gaussian noise at each receiver. This means that, for an LOS symmetrically connected interference network, at any finite power, the total spectral efficiency can grow linearly with K as K, J →∞. This is achieved by extending the time domain interference alignment scheme proposed by Grokop et al. for the k-user Gaussian interference channel to interference networks.
Resumo:
Drawing inspiration from real world interacting systems, we study a system consisting of two networks that exhibit antagonistic and dependent interactions. By antagonistic and dependent interactions we mean that a proportion of functional nodes in a network cause failure of nodes in the other, while failure of nodes in the other results in failure of links in the first. In contrast to interdependent networks, which can exhibit first-order phase transitions, we find that the phase transitions in such networks are continuous. Our analysis shows that, compared to an isolated network, the system is more robust against random attacks. Surprisingly, we observe a region in the parameter space where the giant connected components of both networks start oscillating. Furthermore, we find that for Erdos-Renyi and scale-free networks the system oscillates only when the dependence and antagonism between the two networks are very high. We believe that this study can further our understanding of real world interacting systems.
Resumo:
We consider a single server queue with the interarrival times and the service times forming a regenerative sequence. This traffic class includes the standard models: lid, periodic, Markov modulated (e.g., BMAP model of Lucantoni [18]) and their superpositions. This class also includes the recently proposed traffic models in high speed networks, exhibiting long range dependence. Under minimal conditions we obtain the rates of convergence to stationary distributions, finiteness of stationary moments, various functional limit theorems and the continuity of stationary distributions and moments. We use the continuity results to obtain approximations for stationary distributions and moments of an MMPP/GI/1 queue where the modulating chain has a countable state space. We extend all our results to feedforward networks where the external arrivals to each queue can be regenerative. In the end we show that the output process of a leaky bucket is regenerative if the input process is and hence our results extend to a queue with arrivals controlled by a leaky bucket.
Resumo:
In this paper, we study the Foschini Miljanic algorithm, which was originally proposed in a static channel environment. We investigate the algorithm in a random channel environment, study its convergence properties and apply the Gerschgorin theorem to derive sufficient conditions for the convergence of the algorithm. We apply the Foschini and Miljanic algorithm to cellular networks and derive sufficient conditions for the convergence of the algorithm in distribution and validate the results with simulations. In cellular networks, the conditions which ensure convergence in distribution can be easily verified.
Resumo:
Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.
Resumo:
There is a growing recognition of the need to integrate non-trophic interactions into ecological networks for a better understanding of whole-community organization. To achieve this, the first step is to build networks of individual non-trophic interactions. In this study, we analyzed a network of interdependencies among bird species that participated in heterospecific foraging associations (flocks) in an evergreen forest site in the Western Ghats, India. We found the flock network to contain a small core of highly important species that other species are strongly dependent on, a pattern seen in many other biological networks. Further, we found that structural importance of species in the network was strongly correlated to functional importance of species at the individual flock level. Finally, comparisons with flock networks from other Asian forests showed that the same taxonomic groups were important in general, suggesting that species importance was an intrinsic trait and not dependent on local ecological conditions. Hence, given a list of species in an area, it may be possible to predict which ones are likely to be important. Our study provides a framework for the investigation of other heterospecific foraging associations and associations among species in other non-trophic contexts.
Resumo:
Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define `synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in `synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest utilities of our framework to several aspects of network physiology including cell assemblies, population codes, and oscillatory synchrony.
Resumo:
Content Distribution Networks (CDNs) are widely used to distribute data to large number of users. Traditionally, content is being replicated among a number of surrogate servers, leading to high operational costs. In this context, Peer-to-Peer (P2P) CDNs have emerged as a viable alternative. An issue of concern in P2P networks is that of free riders, i.e., selfish peers who download files and leave without uploading anything in return. Free riding must be discouraged. In this paper, we propose a criterion, the Give-and-Take (G&T) criterion, that disallows free riders. Incorporating the G&T criterion in our model, we study a problem that arises naturally when a new peer enters the system: viz., the problem of downloading a `universe' of segments, scattered among other peers, at low cost. We analyse this hard problem, and characterize the optimal download cost under the G&T criterion. We propose an optimal algorithm, and provide a sub-optimal algorithm that is nearly optimal, but runs much more quickly; this provides an attractive balance between running time and performance. Finally, we compare the performance of our algorithms with that of a few existing P2P downloading strategies in use. We also study the computation time for prescribing the strategy for initial segment and peer selection for the newly arrived peer for various existing and proposed algorithms, and quantify cost-computation time trade-offs.
Resumo:
Video streaming applications have hitherto been supported by single server systems. A major drawback of such a solution is that it increases the server load. The server restricts the number of clients that can be simultaneously supported due to limitation in bandwidth. The constraints of a single server system can be overcome in video streaming if we exploit the endless resources available in a distributed and networked system. We explore a P2P system for streaming video applications. In this paper we build a P2P streaming video (SVP2P) service in which multiple peers co-operate to serve video segments for new requests, thereby reducing server load and bandwidth used. Our simulation shows the playback latency using SVP2P is roughly 1/4th of the latency incurred when the server directly streams the video. Bandwidth consumed for control messages (overhead) is as low as 1.5% of the total data transfered. The most important observation is that the capacity of the SVP2P grows dynamically.
Resumo:
Query incentive networks capture the role of incentives in extracting information from decentralized information networks such as a social network. Several game theoretic tilt:Kids of query incentive networks have been proposed in the literature to study and characterize the dependence, of the monetary reward required to extract the answer for a query, on various factors such as the structure of the network, the level of difficulty of the query, and the required success probability.None of the existing models, however, captures the practical andimportant factor of quality of answers. In this paper, we develop a complete mechanism design based framework to incorporate the quality of answers, in the monetization of query incentive networks. First, we extend the model of Kleinberg and Raghavan [2] to allow the nodes to modulate the incentive on the basis of the quality of the answer they receive. For this qualify conscious model. we show are existence of a unique Nash equilibrium and study the impact of quality of answers on the growth rate of the initial reward, with respect to the branching factor of the network. Next, we present two mechanisms; the direct comparison mechanism and the peer prediction mechanism, for truthful elicitation of quality from the agents. These mechanisms are based on scoring rules and cover different; scenarios which may arise in query incentive networks. We show that the proposed quality elicitation mechanisms are incentive compatible and ex-ante budget balanced. We also derive conditions under which ex-post budget balance can beachieved by these mechanisms.
Resumo:
Particle Swarm Optimization is a parallel algorithm that spawns particles across a search space searching for an optimized solution. Though inherently parallel, they have distinct synchronizations points which stumbles attempts to create completely distributed versions of it. In this paper, we attempt to create a completely distributed peer-peer particle swarm optimization in a cluster of heterogeneous nodes. Since, the original algorithm requires explicit synchronization points we modified the algorithm in multiple ways to support a peer-peer system of nodes. We also modify certain aspect of the basic PSO algorithm and show how certain numerical problems can take advantage of the same thereby yielding fast convergence.