18 resultados para pathology of resource use
em Indian Institute of Science - Bangalore - Índia
Resumo:
Indian society is an agglomeration of several thousand endogamous groups or castes each with a restricted geographical range and a hereditarily determine mode of subsistence. These reproductively isolated castes may be compared to biological species, and the society thought of as a biological community with each caste having its specific ecological niche. In this paper we examine the ecological-niche relationships of castes which are directly dependent on natural resources. Evidence is presented to show that castes living together in the same region had so organized their pattern of resource use as to avoid excessive intercaste competition for limiting resources. Furthermore, territorial division of the total range of the caste regulated intra-caste competition. Hence, a particular plant or animal resource in a given locality was used almost exclusively by a given lineage within a caste generation after generation. This favoured the cultural evolution of traditions ensuring sustainable use of natural resources. This must have contributed significantly to the stability of Indian caste society over several thousand years. The collapse of the base of natural resources and increasing monetarization of the economy has, however, destroyed the earlier complementarity between the different castes and led to increasing conflicts between them in recent years.
Resumo:
The inefficient use of energy in a large number of industries is slowly developing into a major energy crisis in the already power-starved Karnataka State, India. This study attempts to bring out the present inefficient pattern of energy use in an electro-metallurgical industry. It also brings out the considerable scope for energy conservation, especially by increasing the efficiency of the end-use devices used. This concept, when extended to other industries, wherein increasing efficiency of the end-use devices would provide the desired end results with small energy input. This, in turn, would result in a slower rate of energy growth as well as saving in energy use.
Resumo:
Purpose - There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text searching. Most of the available open-source digital library software facilitates indexing and searching of full-text documents in different formats. This paper makes an effort to enable full-text search features in the widely used open-source library automation package Koha, by integrating it with two open-source digital library software packages, Greenstone Digital Library Software (GSDL) and Fedora Generic Search Service (FGSS), independently. Design/methodology/approach - The implementation is done by making use of the Search and Retrieval by URL (SRU) feature available in Koha, GSDL and FGSS. The full-text documents are indexed both in Koha and GSDL and FGSS. Findings - Full-text searching capability in Koha is achieved by integrating either GSDL or FGSS into Koha and by passing an SRU request to GSDL or FGSS from Koha. The full-text documents are indexed both in the library automation package (Koha) and digital library software (GSDL, FGSS) Originality/value - This is the first implementation enabling the full-text search feature in a library automation software by integrating it into digital library software.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
In animal populations, the constraints of energy and time can cause intraspecific variation in foraging behaviour. The proximate developmental mediators of such variation are often the mechanisms underlying perception and associative learning. Here, experience-dependent changes in foraging behaviour and their consequences were investigated in an urban population of free-ranging dogs, Canis familiaris by continually challenging them with the task of food extraction from specially crafted packets. Typically, males and pregnant/lactating (PL) females extracted food using the sophisticated `gap widening' technique, whereas non-pregnant/non-lactating (NPNL) females, the relatively underdeveloped `rip opening' technique. In contrast to most males and PL females (and a few NPNL females) that repeatedly used the gap widening technique and improved their performance in food extraction with experience, most NPNL females (and a few males and PL females) non-preferentially used the two extraction techniques and did not improve over successive trials. Furthermore, the ability of dogs to sophisticatedly extract food was positively related to their ability to improve their performance with experience. Collectively, these findings demonstrate that factors such as sex and physiological state can cause differences among individuals in the likelihood of learning new information and hence, in the rate of resource acquisition and monopolization.
Resumo:
Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.
Resumo:
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. center dot Land-use changes affect global and regional climates through both biochemical and biophysical process. center dot Climate effect from biophysical process depends on the location of land-use change. center dot Climate mitigation strategies such as afforestation/reforestation should consider the net effect of biochemical and biophysical processes for effective mitigation. center dot Climate-smart agriculture could use bio-geoengineering techniques that consider plant biophysical characteristics such as reflectivity and water use efficiency.
Resumo:
Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.
Resumo:
India has rich traditions of nature conservation as well as a vigorous official program of protection of nature reserves developed over the last 40 years. However, the officialp rograms uffers fromt otal relianceo n authoritarianm anagement arrangements in which decisions are made centrally and coercion is used to implement them. At the same time, the state apparatus organises subsidized resource flows to the urbanindustrial- intensivea griculturalc omplex which promote inefficient,n on-sustainable resource-use patterns that are inimical to conservation of biodiversity. These processes are illustrated within the concrete setting of the district of Uttara Kannada in southern India. It is suggested that the interests of conservation would be served far better by an approach that withdraws the subsidies to the elite so that a much more efficient, sustainable and equitable pattern of resource use, compatible with conservation of biodiversity, can be instituted. In conjunction with this, the larger society should involve local people in working out detailed plans for conservation of biodiversity and offer them adequate authority as well as appropriate financial incentives to implement these plans. The paper goes on to illustrate how such an approach may be implemented in the case of Uttara Kannada.
Resumo:
Indigenous peoples with a historical continuity of resource-use practices often possess a broad knowledge base of the behavior of complex ecological systems in their own localities. This knowledge has accumulated through a long series of observations transmitted from generation to generation. Such ''diachronic'' observations can be of great value and complement the ''synchronic''observations on which western science is based. Where indigenous peoples have depended, for long periods of time, on local environments for the provision of a variety of resources, they have developed a stake in conserving, and in some cases, enhancing, biodiversity. They are aware that biological diversity is a crucial factor in generating the ecological services and natural resources on which they depend. Some indigenous groups manipulate the local landscape to augment its heterogeneity, and some have been found to be motivated to restore biodiversity in degraded landscapes. Their practices for the conservation of biodiversity were grounded in a series of rules of thumb which are apparently arrived at through a trial and error process over a long historical time period. This implies that their knowledge base is indefinite and their implementation involves an intimate relationship with the belief system. Such knowledge is difficult for western science to understand. It is vital, however, that the value of the knowledge-practice-belief complex of indigenous peoples relating to conservation of biodiversity is fully recognized if ecosystems and biodiversity are to be managed sustainably. Conserving this knowledge would be most appropriately accomplished through promoting the community-based resource-management systems of indigenous peoples.
Resumo:
Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.
Resumo:
The high cost and extraordinary demands made on sophisticated air defence systems, pose hard challenges to the managers and engineers who plan the operation and maintenance of such systems. This paper presents a study aimed at developing simulation and systems analysis techniques for the effective planning and efficient operation of small fleets of aircraft, typical of the air force of a developing country. We consider an important aspect of fleet management: the problem of resource allocation for achieving prescribed operational effectiveness of the fleet. At this stage, we consider a single flying-base, where the operationally ready aircraft are stationed, and a repair-depot, where the planes are overhauled. An important measure of operational effectiveness is ‘ availability ’, which may be defined as the expected fraction of the fleet fit for use at a given instant. The tour of aircraft in a flying-base, repair-depot system through a cycle of ‘ operationally ready ’ and ‘ scheduled overhaul ’ phases is represented first by a deterministic flow process and then by a cyclic queuing process. Initially the steady-state availability at the flying-base is computed under the assumptions of Poisson arrivals, exponential service times and an equivalent singleserver repair-depot. This analysis also brings out the effect of fleet size on availability. It defines a ‘ small ’ fleet essentially in terms of the important ‘ traffic ’ parameter of service rate/maximum arrival rate.A simulation model of the system has been developed using GPSS to study sensitivity to distributional assumptions, to validate the principal assumptions of the analytical model such as the single-server assumption and to obtain confidence intervals for the statistical parameters of interest.
Resumo:
The production of rainfed crops in semi-arid tropics exhibits large variation in response to the variation in seasonal rainfall. There are several farm-level decisions such as the choice of cropping pattern, whether to invest in fertilizers, pesticides etc., the choice of the period for planting, plant population density etc. for which the appropriate choice (associated with maximum production or minimum risk) depends upon the nature of the rainfall variability or the prediction for a specific year. In this paper, we have addressed the problem of identifying the appropriate strategies for cultivation of rainfed groundnut in the Anantapur region in a semi-arid part of the Indian peninsula. The approach developed involves participatory research with active collaboration with farmers, so that the problems with perceived need are addressed with the modern tools and data sets available. Given the large spatial variation of climate and soil, the appropriate strategies are necessarily location specific. With the approach adopted, it is possible to tap the detailed location specific knowledge of the complex rainfed ecosystem and gain an insight into the variety of options of land use and management practices available to each category of stakeholders. We believe such a participatory approach is essential for identifying strategies that have a favourable cost-benefit ratio over the region considered and hence are associated with a high chance of acceptance by the stakeholders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Inspired by the demonstration that tool-use variants among wild chimpanzees and orangutans qualify as traditions (or cultures), we developed a formal model to predict the incidence of these acquired specializations among wild primates and to examine the evolution of their underlying abilities. We assumed that the acquisition of the skill by an individual in a social unit is crucially controlled by three main factors, namely probability of innovation, probability of socially biased learning, and the prevailing social conditions (sociability, or number of potential experts at close proximity). The model reconfirms the restriction of customary tool use in wild primates to the most intelligent radiation, great apes; the greater incidence of tool use in more sociable populations of orangutans and chimpanzees; and tendencies toward tool manufacture among the most sociable monkeys. However, it also indicates that sociable gregariousness is far more likely to produce the maintenance of invented skills in a population than solitary life, where the mother is the only accessible expert. We therefore used the model to explore the evolution of the three key parameters. The most likely evolutionary scenario is that where complex skills contribute to fitness, sociability and/or the capacity for socially biased learning increase, whereas innovative abilities (i.e., intelligence) follow indirectly. We suggest that the evolution of high intelligence will often be a byproduct of selection on abilities for socially biased learning that are needed to acquire important skills, and hence that high intelligence should be most common in sociable rather than solitary organisms. Evidence for increased sociability during hominin evolution is consistent with this new hypothesis. (C) 2003 Elsevier Science Ltd. All rights reserved.