89 resultados para passive microwave remote sensing
em Indian Institute of Science - Bangalore - Índia
Resumo:
Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
For improved water management and efficiency of use in agriculture, studies dealing with coupled crop-surface water-groundwater models are needed. Such integrated models of crop and hydrology can provide accurate quantification of spatio-temporal variations of water balance parameters such as soil moisture store, evapotranspiration and recharge in a catchment. Performance of a coupled crop-hydrology model would depend on the availability of a calibrated crop model for various irrigated/rainfed crops and also on an accurate knowledge of soil hydraulic parameters in the catchment at relevant scale. Moreover, such a coupled model should be designed so as to enable the use/assimilation of recent satellite remote sensing products (optical and microwave) in order to model the processes at catchment scales. In this study we present a framework to couple a crop model with a groundwater model for applications to irrigated groundwater agricultural systems. We discuss the calibration of the STICS crop model and present a methodology to estimate the soil hydraulic parameters by inversion of crop model using both ground and satellite based data. Using this methodology we demonstrate the feasibility of estimation of potential recharge due to spatially varying soil/crop matrix.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.
Resumo:
In the Himalayas, a large area is covered by glaciers and seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover are discussed. Glacial retreat was estimated for 1868 glaciers in 11 basins distributed in the Indian Himalaya since 1962. The investigation has shown an overall reduction in glacier area from 6332 to 5329km2 from 1962 to 2001/2 - an overall deglaciation of 16%. Snow line at the end of ablation season on the Chhota Shigri glacier observed using field and satellite methods suggests a change in altitude from 4900 to 5200m from the late 1970s to present. Seasonal snow cover was monitored in the 28 river sub-basins using normalized difference snow index (NDSI) technique in Central and Western Himalaya. The investigation has shown that in the early part of winter, i.e. from October to December, a large amount of snow retreat was observed. For many basins located in lower altitude and in the south of the Pir Panjal range, snow ablation was observed throughout the winter season. In addition, average stream runoff of the Baspa basin for the month of December increased by 75%. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter-time increase in stream runoff might suggest an influence of global warming on the Himalayan cryosphere.
Resumo:
Growing concern over the status of global and regional bioenergy resources has necessitated the analysis and monitoring of land cover and land use parameters on spatial and temporal scales. The knowledge of land cover and land use is very important in understanding natural resources utilization, conversion and management. Land cover, land use intensity and land use diversity are land quality indicators for sustainable land management. Optimal management of resources aids in maintaining the ecosystem balance and thereby ensures the sustainable development of a region. Thus sustainable development of a region requires a synoptic ecosystem approach in the management of natural resources that relates to the dynamics of natural variability and the effects of human intervention on key indicators of biodiversity and productivity. Spatial and temporal tools such as remote sensing (RS), geographic information system (GIS) and global positioning system (GPS) provide spatial and attribute data at regular intervals with functionalities of a decision support system aid in visualisation, querying, analysis, etc., which would aid in sustainable management of natural resources. Remote sensing data and GIS technologies play an important role in spatially evaluating bioresource availability and demand. This paper explores various land cover and land use techniques that could be used for bioresources monitoring considering the spatial data of Kolar district, Karnataka state, India. Slope and distance based vegetation indices are computed for qualitative and quantitative assessment of land cover using remote spectral measurements. Differentscale mapping of land use pattern in Kolar district is done using supervised classification approaches. Slope based vegetation indices show area under vegetation range from 47.65 % to 49.05% while distance based vegetation indices shoes its range from 40.40% to 47.41%. Land use analyses using maximum likelihood classifier indicate that 46.69% is agricultural land, 42.33% is wasteland (barren land), 4.62% is built up, 3.07% of plantation, 2.77% natural forest and 0.53% water bodies. The comparative analysis of various classifiers, indicate that the Gaussian maximum likelihood classifier has least errors. The computation of talukwise bioresource status shows that Chikballapur Taluk has better availability of resources compared to other taluks in the district.
Resumo:
Uttara Kannada is the only district in Karnataka, which has a forested area of about 80% and falls in the region of the Western Ghats. It is considered to be a very resourceful in terms of abundant natural resources and constitutes an important district in Karnataka. The forest resources of the district are under pressure as a large portion of the forested area has been converted to non-forestry activities since independence owing to the increased demands from human and animal population resulting in degradation of the forest ecosystem. This has led to poor productivity and regenerative capacity which is evident in the form of barren hill tops, etc in Coastal taluks of Uttara Kannada, entailing regular monitoring of the forest resources very essential. The classification of forest is a prerequisite for managing forest resources. Geographical Information System (GIS), allows the spatial and temporal analysis of the features of interest, and helps in solving the problem of deforestation and associated environmental and ecological problems. Spatial and temporal tools such as GIS and remotely sensed data helps the planners and decision makers in evolving the sustainable strategies for management and conservation of natural resources. Uttara Kannada district was classified on the basis of the land-use using supervised hard classifiers. The land use categories identified were urban area, water bodies, agricultural land, forest cover, and waste land. Further classification was carried out on the basis of forest type. The types of forest categorised were semi-evergreen, evergreen, moist deciduous, dry deciduous, plantations and scrub, thorny and non-forested area. The identified classes were correlated with the ground data collected during field visits. The observed results were compared with the historic data and the changes in the forest cover were analysed. From the assessment made it was clear that there has been a considerable degree of forest loss in certain areas of the district. It was also observed that plantations and social forests have increased drastically over the last fifteen years,and natural forests have declined.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
In the Himalayas, large area is covered by glaciers, seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover have been discussed. Field and satellite based investigations suggest, most of the Himalayan glaciers are retreating though the rate of retreat is varying from glacier to glacier, ranging from few meters to almost 50 meters per year, depending upon the numerous glacial, terrain and meteorological parameters. Retreat was estimated for 1868 glaciers in eleven basins distributed across the Indian Himalaya since 1962 to 2001/02. Estimates show an overall reduction in glacier area from 6332 to 5329 sq km, an overall deglaciation of 16 percent.Snow line at the end of ablation season on the Chhota Shigri glacier suggests a change in altitude from 4900 to 5200 m from late 1970’s to the present. Seasonal snow cover monitoring of the Himalaya has shown large amounts of snow cover depletion in early part of winter, i.e. from October to December. For many basins located in lower altitude and in south of Pir Panjal range, snow ablation was observed through out the winter season. In addition, average stream runoff of the Baspa basin during the month of December shows an increase by 75 per cent. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter time increase in stream runoff suggest an influence of climate change on the Himalayan cryosphere.
Resumo:
All major rivers in Bhutan depend on snowmelt for discharge. Therefore, changes in snow cover due to climate change can influence distribution and availability of water. However, information about distribution of seasonal snow cover in Bhutan is not available. The MODIS snow product was used to study snow cover status and trends in Bhutan. Average snow cover area (SCA) of Bhutan estimated for the period 2002 to 2010 was 9030 sq. km, about 25.5% of the total land area. SCA trend of Bhutan for the period 2002-2010 was found to decrease (-3.27 +/- 1.28%). The average SCA for winter was 14,485 sq. km (37.7%), for spring 7411 sq. km (19.3%), for summer 4326 sq. km (11.2%), and for autumn 7788 sq. km (20.2%), mostly distributed in the elevation range 2500-6000 m amsl. Interannual and seasonal SCA trend both showed a decline, although it was not statistically significant for all sub-basins. Pho Chu sub-basin with 19.5% of the total average SCA had the highest average SCA. The rate of increase of SCA for every 100 m elevation was the highest (2.5%) in the Pa Chu sub-basin. The coefficient of variance of 1.27 indicates high variability of SCA in winter.
Resumo:
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.