8 resultados para parametrice equazioni integro-differenziali
em Indian Institute of Science - Bangalore - Índia
Resumo:
A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
A simplified analysis is employed to handle a class of singular integro-differential equations for their solutions
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.
Resumo:
The dynamics of low-density flows is governed by the Boltzmann equation of the kinetic theory of gases. This is a nonlinear integro-differential equation and, in general, numerical methods must be used to obtain its solution. The present paper, after a brief review of Direct Simulation Monte Carlo (DSMC) methods due to Bird, and Belotserkovskii and Yanitskii, studies the details of theDSMC method of Deshpande for mono as well as multicomponent gases. The present method is a statistical particle-in-cell method and is based upon the Kac-Prigogine master equation which reduces to the Boltzmann equation under the hypothesis of molecular chaos. The proposed Markoff model simulating the collisions uses a Poisson distribution for the number of collisions allowed in cells into which the physical space is divided. The model is then extended to a binary mixture of gases and it is shown that it is necessary to perform the collisions in a certain sequence to obtain unbiased simulation.
Resumo:
Analytical short time solution of moving boundary in heat conduction in a cylindrical mould under prescribed flux boundary condition has been studied in this paper. Partial differential equations are converted to integro-differential equations. These integro-differential equations which are coupled have been solved analytically for short time by choosing suitable series expansions for the unknown quantitities.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
The subject of transients in polyphase induction motors and synchronous machines has been studied in very great detail by several investigators, but no published literature exists dealing exclusively with the analysis of the problem of transients in single-phase induction motors. This particular problem has been studied in this paper by applying the Laplace transform. The results of actual computation of the currents and developed electrical torque are compared with the data obtained by setting up the integro-differential equations of the machine on an electronic differential analyzer. It is shown that if the motor is switched on to the supply when the potential passes through its zero value, there is a pulsating fundamental frequency torque superimposed on the average steady-state unidirectional torque. If, on the other hand, the switch is closed when the applied potential passes through its maximum value, the developed electrical torque settles down to its final steady-state value during the first cycle of the supply voltage.