126 resultados para parameter driven model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cluster model of the glass transition has been developed, treating the relative size of the cluster as an order parameter. The model accounts for some of the features of the glass transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transmission loss (TL) of an elliptical cylindrical chamber muffler having a single side/end inlet and multiple side/end outlet is analyzed by means of the 3-D semi-analytical formulation based upon the modal expansion (in terms of the angular and radial Mathieu functions) and the Green's function. The acoustic pressure response obtained in terms of Green's function is integrated over surface area of the side/end ports (modeled as rigid pistons) and upon subsequent division by the port area, yields the acoustic pressure response or impedance Z] matrix parameters due to the uniform piston-driven model. The 3-D semi-analytical results are found to be in excellent agreement with the results obtained by means of 3-D FEA (SYSNOISE) simulations, thereby validating the semi-analytical procedure suggested in this work. Parametric studies such as the effect of chamber length (L), angular and axial locations of the ports, interchanging the locations of inlet and outlet ports as well as the addition of an outlet port for double outlet mufflers on the TL performance are reported, thereby leading to the formulation of design guidelines for obtaining muffler configurations exhibiting a broad-band TL spectrum. One such configuration is an axially long chamber having side-inlet and side-outlet ports such that one of the side ports is located at half the axial length on themajor/minor axis and the other side port is located at three-quarters (or one-quarter) of the axial length on the minor/major axis. (C) 2012 Institute of Noise Control Engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5 K and 45.5 K are predicted at the bed center for discharge rates of 1.0 l min(-1) and 5.0 l min(-1) respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the LID ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0 l min(-1) and 88.7% at 5 l min(-1). Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope sigma(c), a parameter alpha, governing the local current-slope relation (beyond threshold), and j(in), the mean input current of sand. A non-equilibrium phase diagram is obtained in the alpha-j(in) plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.z

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an analysis of the interfacial tension model for the movement of the catalytically driven nanorod. The model considers the convective reaction-diffusion equation for the production and diffusion of oxygen around the bimetallic nanorod. We solve the equation and find the concentration difference, which drives the nanorod. We use our expression to calculate the force on the nanorod and find that the result is within 20% of the results found earlier [ W. Paxton et al., J. Am. Chem. Soc. 128, 14881 (2006) ] by an approximate method. Unlike the earlier results, our results are valid from short to long lengths of the nanorod.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The granular flow down an inclined plane is simulated using the discrete element (DE) technique to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model First, we examine the average coordination number for the particles in the flow down an inclined plane using the DE technique using the linear contact model with and without friction, and the Hertzian contact model with friction The simulations show that the average coordination number decreases below 1 for values of the spring stiffness corresponding to real materials, such as sand and glass, even when the angle of inclination is only 10 larger than the angle of repose Additional measures of correlations in the system, such as the fraction of particles with multibody contact, the force ratio (average ratio of the magnitudes of the largest and the second largest force on a particle), and the angle between the two largest forces on the particle, show no evidence of force chains or other correlated motions in the system An analysis of the bond-orientational order parameter indicates that the flow is in the random state, as in event-driven (ED) simulations V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are compared with the theory V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] and are found to be in quantitative agreement In addition, we also conduct a comparison of the collision frequency and the distribution of the precollisional relative velocities of particles in contact The strong correlation effects exhibited by these two quantities in event-driven simulations V Kumaran, J Fluid Mech 632, 145 (2009)] are also found in the DE simulations (C) 2010 American Institute of Physics doi 10 1063/1 3504660]