23 resultados para paralytic shellfish poisoning (PSP)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Late-transition-metal-doped Pt clusters are prevalent in CO oxidation catalysis, as they exhibit better catalytic activity than pure Pt, while reducing the effective cost and poisoning However, completely eliminating the critical problem of Pt poisoning still poses a big challenge. Here, we report for the first time that, among the bimetallic clusters ((Pt3M where M = Co, Ni, and Cu)/MgO(100)), the CO adsorption site inverts for Pt3Co/MgO(100) from Pt to Co, due to the complete uptake of Pt d-states by lattice oxygen. While this resolves the problem of Pt poisoning, good reaction kinetics are predicted through low barriers for Langmuir-Hinshelwood and Mars van Krevelen (MvK) mechanisms of CO oxidation for Pt3Co/MgO(100) and Li-doped MgO(100), respectively. Li doping in MgO(100) compensates for the charge imbalance caused by a spontaneous oxygen vacancy formation. Pt-3 Co/Li-doped MgO(100) stands out as an exceptional CO oxidation catalyst, giving an MvK reaction barrier as low as 0.11 eV. We thereby propose a novel design strategy of d-band center inversion for CO oxidation catalysts with no Pt poisoning and excellent reaction kinetics.
Resumo:
Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3 are synthesized using chemical reduction and solution combustion method, respectively. Chemical reduction is carried out using formaldehyde as a reducing agent giving Pt-supported La1-xSrxCoO3. Solution combustion method is used to prepare Pt-doped La1-xSrxCoO3. Detailed characterization using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, and transmission electron microscopy (TEM) is carried out to distinguish the Pt-supported and Pt-doped compounds in terms of their morphology and Pt oxidations states. TEM results indeed show the differences in their morphology. Further, electrochemical measurements are performed in neutral medium to differentiate their electrochemical activity. Cyclic voltammetry (CV) shows noticeable differences between Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3. Importantly, our results show that Pt4+ in doped compound has poor to zero electrocatalytic activity toward formic acid and methanol electro-oxidation in comparison to Pt-0 in supported compound. This study shows that metallic Pt in zero oxidation state is a superior catalyst to Pt in +4 oxidation state.
Resumo:
During the thermal decomposition of orthorhombic ammonium perchlorate (AP) at 230°C, where the decomposition is only up to 30 wt %, there is an accumulation in the solid of acids, the concentration of which increases up to 15% decomposition, after which it decreases till it reaches the original value. Similar observations have been made in the polystyrene (PS)/AP propellant systems. Aging studies of PS/AP propellants have been carried out earlier [1], where it has been shown that for the aged propellants the thermal decomposition (TD) rate at 230°C and 260°C and ambient pressure burning rate (Image ) both increase and this increase is due to the formation of reactive intermediate “polystyrene peroxide (PSP).” In the present studies it has been observed that during the aging of the propellant at 150°C, the acid is formed and gets accumulated in the propellant, which may also be responsible for the increase in TD rate and perhaps may be more effective than PSP.
Resumo:
Some aspects of the pyrolysis of polystyrene peroxide (PSP) have been examined. Low-temperature decomposition studies at 60°C and 70°C have been carried out to elucidate the ageing behaviour of PSP. The exothermic decomposition was found to be complete in 44 h at 70°C suggesting that all peroxide bonds have broken. Enthalpy measurements of the aged samples were carried out as a function of storage time. Ageing was also followed by infrared spectroscopy, and the intensity of the peroxide absorption around 1050 cm−1 was found to decrease with ageing time. Benzaldehyde formed as a result of PSP pyrolysis is readily converted into benzoic acid, which crystallizes during the ageing process. Pyrolysis—gas chromatographic studies have shown that up to 450°C the basic decomposition mechanism (i.e., the formation of benzaldehyde and formaldehyde as the major products) does not change. No effect of pressure on the decomposition exotherm in differential thermal analysis was observed, suggesting that peroxide composition involves only condensed phase reactions. Hydroquinone, p-aminophenol and cadmium sulphide were found to retard the thermal decomposition of PSP, suggesting that these compounds would be potential antioxidants for polymers.
Resumo:
The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.
Resumo:
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.
Resumo:
Polymeric peroxides have received renewed attention in the recent past, in view of some significant explorations of their physical and chemical properties. The potential of polymeric peroxides as a class, as specialized fuel, and the need to synthesize such new materials have been reported in the literature. So far, this class of polymers is constituted only by a dozen or so polyperoxides. From the point of view of their use in propellant applications, the importance lies in making materials which are easy to handle etc., unlike the earlier reported poly(styrene peroxide) (PSP), a sticky semi-solid mass. However, judging from the better combustion characteristics, exploring aromatic monomers was thought worthwhile. In this preliminary communication, the synthesis of a new polymeric peroxide made from 1,4-divinylbenzene is reported. The polymer obtained was in powder form and had an exothermic heat of degradation approximately equal to that of PSP. 4 ref.--AA
Resumo:
Polymeric peroxides are equimolar alternating copolymers formed by the reaction of vinyl monomers with oxygen. Physicochemical studies on the microstructure and chain dynamics of poly(styrene peroxide) PSP were first carried out by Cais and Bovey. We have found that polyperoxides are formed as main intermediates in solid-propellant combustion by the interaction of the monomer and oxygen generated by the decomposition of the polymeric binder and the oxidizer ammonium perchlorate. The experimentally determined heat of degradation and that calculated from thermochemical considerations reveal that polyperoxides undergo highly exothermic primary degradation, the rate-controlling step being the O-O bond dissociation. A random-chain scission mechanism for the thermal degradation of polyperoxides has been proposed. The prediction of unusual exothermic degradation of polyperoxides has resulted in the discovery of an interesting new phenomenon of 'autopyrolysability' in polymers. Several new polyperoxides based on vinyl naphthalene have been synthesized. We have also found that PSP, in conjunction with amines, can be used as initiator at ambient temperature for the radical polymerization of vinyl monomers.
Resumo:
In the present study, titanium nitride which shows exceptional stability, extreme corrosion resistance, good electronic conductivity and adhesion behaviour is used to support platinum particles and then used for methanol oxidation in an alkaline medium. The catalyst shows very good CO tolerance for the electrochemical oxidation of methanol. In situ infrared spectroelectrochemical data show the remarkable ability of TiN to decompose water at low over potentials leading to -OH type functional groups on its surface which in turn help in alleviating the carbon monoxide poisoning associated with methanol oxidation. TiN supported catalysts are found to be very good in terms of long term stability, exchange current density and stable currents at low over voltages. Supporting evidence from X-ray photoelectron spectroscopic data and cyclic voltammetry clearly demonstrates the usefulness of TiN supported Pt catalysts for efficient methanol oxidation in alkaline media.
Resumo:
The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.
Resumo:
This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
This article describes the first comprehensive study on the use of a vinyl polyperoxide, namely poly(styrene peroxide) (PSP), an equimolar alternating copolymer of oxygen and styrene, as a photoinitiator for free radical polymerization of vinyl monomers like styrene. The molecular weight, yield, structure and thermal stability of polystyrene (PS) thus obtained are compared with PS made using a simple peroxide like di-t-butyl peroxide. Interestingly, the PS prepared using PSP contained PSP segments attached to its backbone preferably at the chain ends. This PSP-PS-PSP was further used as a thermal macroinitiator for the preparation of another block copolymer PS-b-PMMA by reacting PSP-PS-PSP with methyl methacrylate (MMA). The mechanism of block copolymerization has been discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Cadmium (Cd) influences lipid peroxidation (LPO) by enhancing peroxidation of membrane lipids and by disturbing the antioxidant system of cells. In isolated rat hepatocytes, LPO was observed in cells incubated with Cd (50-250 mu M) for various time periods up to 90 min. The antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) were inhibited along with depletion of glutathione (GSH) in hepatocytes treated with Cd. The results show that Cd influences LPO in rat hepatocytes due to decrease in antioxidant status.
Resumo:
The thermal degradation of vinyl polyperoxides, poly(styrene peroxide, (PSP), poly(alpha-methylstyrene peroxide) (PAMSP) and poly(alpha-phenylstyrene pet-oxide) (PAPSP), was carried out at different temperatures in toluene. The time evolution of molecular weight distributions (MWDs) was determined by gel permeation chromatography (GPC). A continuous distribution model was used to evaluate the random chain degradation rate coefficients. The activation energies, determined from the temperature dependence of the rate coefficients, suggest that thermal degradation of polyperoxides is controlled by the dissociation of the O-O bonds in the backbone of the polymer chain. Among the three polyperoxides investigated, the thermal stability is the highest for PAPSP and the lowest for PAMSP. (C) 2002 Elsevier Science Ltd. All rights reserved.