10 resultados para pandemic
em Indian Institute of Science - Bangalore - Índia
Resumo:
Background: There was a low adherence to influenza A (H1N1) vaccination program among university students and health care workers during the pandemic influenza in many parts of the world. Vaccination of high risk individuals is one of the recommendations of World Health Organization during the post-pandemic period. It is not documented about the student's knowledge, attitude and willingness to accept H1N1 vaccination during the post-pandemic period. We aimed to analyze the student's knowledge, attitude and willingness to accept H1N1 vaccination during the post-pandemic period in India. Methods: Vaccine against H1N1 was made available to the students of Vellore Institute of Technology, India from September 2010. The data are based on a cross-sectional study conducted during October 2010 to January 2011 using a self-administered questionnaire with a representative sample of the student population (N = 802). Results: Of the 802 respondents, only 102/802 (12.7%) had been vaccinated and 105/802 (13%) planned to do so in the future, while 595/802 (74%) would probably or definitely not get vaccinated in the future. The highest coverage was among the female (65/102, 63.7%) and non-compliance was higher among men in the group (384/595; 64.5%) (p < 0.0001). The representation of students from school of Bio-sciences and Bio-technology among vaccinees is significantly higher than that of other schools. Majority of the study population from the three groups perceived vaccine against H1N1 as the effective preventive measure when compared to other preventive measures. 250/595 (42%) of the responders argued of not being in the risk group. The risk perception was significantly higher among female (p < 0.0001). With in the study group, 453/802 (56.4%) said that they got the information, mostly from media. Conclusions: Our study shows that the vaccination coverage among university students remains very low in the post-pandemic period and doubts about the safety and effectiveness of the vaccine are key elements in their rejection. Our results indicate a need to provide accessible information about the vaccine safety by scientific authorities and fill gaps and confusions in this regard.
Resumo:
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K-D = 2.1 +/- 0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 mu g/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 mu g/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein `Sa' and `Sb' sites were independently mutated, localized the binding site of MA2077 within the `Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.
Resumo:
The 2009 pandemic H1N1 S-OIV (swine origin influenza A virus) caused noticeable morbidity and mortality worldwide. In addition to vaccine and antiviral drug therapy, the use of influenza virus neutralizing monoclonal antibodies (MAbs) for treatment purposes is a viable alternative. We previously reported the isolation of a high affinity, potently neutralizing murine MAb MA2077 against 2009 pandemic H1N1 virus. We describe here the humanization of MA2077 and its expression in a mammalian cell line. Six complementarity-determining regions (CDRs) of MA2077 were grafted onto the human germline variable regions; along with six and eight back mutations in the framework of heavy and light chains, respectively, pertaining to the vernier zone and interchain packing residues to promote favorable CDR conformation and facilitate antigen binding. The full length humanized antibody, 2077Hu2, expressed in CHO-K1 cells, showed high affinity to hemagglutinin protein (K-D = 0.75 +/- 0.32 nM) and potent neutralization of pandemic H1N1 virus (IC50 = 0.17 mu g/mL), with marginally higher IC50 as compared to MA2077 (0.08 mu g/mL). In addition, 2077Hu2 also retained the epitope specificity for the ``Sa'' antigenic site on pandemic HA. To the best of our knowledge, this is the first report of a humanized neutralizing antibody against pandemic H1N1 virus.
Resumo:
Therapeutic options aimed at confronting the HIV pandemic face many obstacles. Current opinion on HIV-induced pathogenic immune activation and strategies aimed at eliminating HIV, including a potential role for non-neutralising antibodies as part of a therapeutic vaccine option, was elegantly reviewed by Martin Cadogan and Angus Dalgleish. 1 It is important to note that, for eliciting such antibody responses in patients, functionally fit antigen presenting cells and effector T and B cells are cruc.
Resumo:
Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.
Resumo:
Tuberculosis continues to kill 1.4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.
Resumo:
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Resumo:
Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential ``universal'' vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, ``isoleucine-zipper'', or ``foldon''. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up.
Resumo:
Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies indudced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity.