78 resultados para pacs: data handling techniques

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several techniques are known for searching an ordered collection of data. The techniques and analyses of retrieval methods based on primary attributes are straightforward. Retrieval using secondary attributes depends on several factors. For secondary attribute retrieval, the linear structures—inverted lists, multilists, doubly linked lists—and the recently proposed nonlinear tree structures—multiple attribute tree (MAT), K-d tree (kdT)—have their individual merits. It is shown in this paper that, of the two tree structures, MAT possesses several features of a systematic data structure for external file organisation which make it superior to kdT. Analytic estimates for the complexity of node searchers, in MAT and kdT for several types of queries, are developed and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a new method of data handling for web servers. We call this method Network Aware Buffering and Caching (NABC for short). NABC facilitates reduction of data copies in web server's data sending path, by doing three things: (1) Layout the data in main memory in a way that protocol processing can be done without data copies (2) Keep a unified cache of data in kernel and ensure safe access to it by various processes and kernel and (3) Pass only the necessary meta data between processes so that bulk data handling time spent during IPC can be reduced. We realize NABC by implementing a set of system calls and an user library. The end product of the implementation is a set of APIs specifically designed for use by the web servers. We port an in house web server called SWEET, to NABC APIs and evaluate performance using a range of workloads both simulated and real. The results show a very impressive gain of 12% to 21% in throughput for static file serving and 1.6 to 4 times gain in throughput for lightweight dynamic content serving for a server using NABC APIs over the one using UNIX APIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates of interfacial friction angle (delta) are necessary for the design of retaining structures and deep foundations, Recommendations in the literature regarding delta values are often contradictory and are therefore not easy to apply in geotechnical design, A critical examination of past studies in terms of data generation techniques used and conclusions drawn indicates that two distinctly different test procedures/techniques have been evolved. The interfacial situation in practice can also be categorized into two broad types, These two types of interface problems in geotechnical engineering are (a) the structure is placed on the free surface of prepared fill (type A situation) and (b) the fill is placed against the material surface which functions as a confined boundary (type B situation), The friction angle delta depends on the surface roughness of the construction material, But in the type A situation, it is independent of density and its limiting maximum value (delta(lim)) is the critical state friction angle phi(cv). In the type B situation, it is dependent on density of the fill and its limiting maximum value is the peak angle of internal friction phi(p) of the fill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMR-based approach to metabolomics typically involves the collection of two-dimensional (2D) heteronuclear correlation spectra for identification and assignment of metabolites. In case of spectral overlap, a 3D spectrum becomes necessary, which is hampered by slow data acquisition for achieving sufficient resolution. We describe here a method to simultaneously acquire three spectra (one 3D and two 2D) in a single data set, which is based on a combination of different fast data acquisition techniques such as G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. The following spectra are acquired simultaneously: (1) C-13 multiplicity edited GFT (3,2)D HSQC-TOCSY, (2) 2D H-1- H-1] TOCSY and (3) 2D C-13- H-1] HETCOR. The spectra are obtained at high resolution and provide high-dimensional spectral information for resolving ambiguities. While the GFT spectrum has been shown previously to provide good resolution, the editing of spin systems based on their CH multiplicities further resolves the ambiguities for resonance assignments. The experiment is demonstrated on a mixture of 21 metabolites commonly observed in metabolomics. The spectra were acquired at natural abundance of C-13. This is the first application of a combination of three fast NMR methods for small molecules and opens up new avenues for high-throughput approaches for NMR-based metabolomics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human provisioning of wildlife with food is a widespread global practice that occurs in multiple socio-cultural circumstances. Provisioning may indirectly alter ecosystem functioning through changes in the eco-ethology of animals, but few studies have quantified this aspect. Provisioning of primates by humans is known to impact their activity budgets, diets and ranging patterns. Primates are also keystone species in tropical forests through their role as seed dispersers; yet there is no information on how provisioning might affect primate ecological functions. The rhesus macaque is a major human-commensal species but is also an important seed disperser in the wild. In this study, we investigated the potential impacts of provisioning on the role of rhesus macaques as seed dispersers in the Buxa Tiger Reserve, India. We studied a troop of macaques which were provisioned for a part of the year and were dependent on natural resources for the rest. We observed feeding behaviour, seed handling techniques and ranging patterns of the macaques and monitored availability of wild fruits. Irrespective of fruit availability, frugivory and seed dispersal activities decreased when the macaques were provisioned. Provisioned macaques also had shortened daily ranges implying shorter dispersal distances. Finally, during provisioning periods, seeds were deposited on tarmac roads that were unconducive for germination. Provisioning promotes human-primate conflict, as commensal primates are often involved in aggressive encounters with humans over resources, leading to negative consequences for both parties involved. Preventing or curbing provisioning is not an easy task as feeding wild animals is a socio-cultural tradition across much of South and South-East Asia, including India. We recommend the initiation of literacy programmes that educate lay citizens about the ill-effects of provisioning and strongly caution them against the practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel second order cone programming formulation for designing robust classifiers which can handle uncertainty in observations. Similar formulations are also derived for designing regression functions which are robust to uncertainties in the regression setting. The proposed formulations are independent of the underlying distribution, requiring only the existence of second order moments. These formulations are then specialized to the case of missing values in observations for both classification and regression problems. Experiments show that the proposed formulations outperform imputation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel algorithm for compression of single lead Electrocardiogram (ECG) signals. The method is based on Pole-Zero modelling of the Discrete Cosine Transformed (DCT) signal. An extension is proposed to the well known Steiglitz-Hcbride algorithm, to model the higher frequency components of the input signal more accurately. This is achieved by weighting the error function minimized by the algorithm to estimate the model parameters. The data compression achieved by the parametric model is further enhanced by Differential Pulse Code Modulation (DPCM) of the model parameters. The method accomplishes a compression ratio in the range of 1:20 to 1:40, which far exceeds those achieved by most of the current methods.