158 resultados para optical spectrum analyzer (OSA)
em Indian Institute of Science - Bangalore - Índia
Resumo:
A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.
Resumo:
The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.
Resumo:
Fiber Bragg grating (FBG) and Long Period Grating (LPG) chemical sensors are one of the most exciting developments in the field of optical fiber sensors. In this paper we have proposed a simple and effective chemical sensor based on FBG and LPG techniques for detecting the traces of cadmium (Cd) in drinking water at ppm level. The sensitiveness of these two has been compared. Also, these results have been compared with the results obtained by sophisticated spectroscopic atomic absorption and emission spectrometer instruments. For proper designing of FBG to act as a concentration sensor, the cladding region of the grating has been etched using HF solution. We have characterized the FBG concentration sensor sensitivities for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm and observed reflected spectrum in FBG and transmitted spectrum in LPG using Optical Spectrum Analyzer. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm in case of LPG and the shift of Bragg wavelength is 0.07 nm in case of FBG for 0.01-0.04 ppm concentrations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of assembled nanostructures from the pre-synthesized nanocrystals building blocks through optical means of exciton formation and dissociation. We demonstrate that Li (x) CoO2 nanocrystals assemble to an acicular architecture, upon prolonged exposure to ultraviolet-visible radiation emitted from a 125 W mercury vapor lamp, through intermediate excitation of excitons. The results obtained in the present study clearly show how nanocrystals of various materials with band gaps appropriate for excitations of excitons at given optical wavelengths can be assembled to unusual nanoarchitectures through illumination with incoherent light sources. The disappearance of exciton bands due to Li (x) CoO2 phase in the optical spectrum of the irradiated film comprising acicular structure is consistent with the proposed mechanism of exciton dissociation in the observed light-induced assembly process. The assembly process occurs through attractive Coulomb interactions between charged dots created upon exciton dissociation. Our work presents a new type of nanocrystal assembly process that is driven by light and exciton directed.
Resumo:
To meet the growing demands of data traffic in long haul communication, it is necessary to efficiently use the low-loss region(C-band) of the optical spectrum, by increasing the no. of optical channels and increasing the bit rate on each channel But narrow pulses occupy higher spectral bandwidth. To circumvent this problem, higher order modulation schemes such as QPSK and QAM can be used to modulate the bits, which increases the spectral efficiency without demanding any extra spectral bandwidth. On the receiver side, to meet a satisfy, a given BER, the received optical signal requires to have minimum OSNR. In our study in this paper, we analyses for different modulation schemes, the OSNR required with and without preamplifier. The theoretical limit of OSNR requirement for a modulation scheme is compared for a given link length by varying the local oscillator (LO) power. Our analysis shows that as we increase the local oscillator (LO) power, the OSNR requirement decreases for a given BER. Also a combination of preamplifier and local oscillator (LO) gives the OSNR closest to theoretical limit.
Resumo:
A novel method, designated the holographic spectrum reconstruction (HSR) method, is proposed for achieving simultaneous display of the spectrum and image of an object in a single plane. A study of the scaling behaviour of both the spectrum and the image has been carried out and based on this study, it is demonstrated that a lensless coherent optical processor can be realized.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
Extending the work of earlier papers on the relativistic-front description of paraxial optics and the formulation of Fourier optics for vector waves consistent with the Maxwell equations, we generalize the Jones calculus of axial plane waves to describe the action of the most general linear optical system on paraxial Maxwell fields. Several examples are worked out, and in each case it is shown that the formalism leads to physically correct results. The importance of retaining the small components of the field vectors along the axis of the system for a consistent description is emphasized.
Resumo:
We report the in situ optical transmission change in the complete visible region of the electromagnetic spectrum to asses the kinetics of photo induced interdiffusion in Sb/As2S3 nanomultilayered film. The interdiffusion of Sb into As2S3 matrix results in the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap, absorption coefficients and Tauc parameter (B-1/2) with evolution of time. The wavelength dependence of the time constants provides a better description of photo induced effects. The time evolution of the absorption coefficients and optical band gap are significantly faster in this process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.
Resumo:
A series of 2′-5′-oligoguanylic acids are prepared by reacting G(cyclic)p with takadiastase T1 ribonuclease and separating the products chromatographically. The 3′-5′-oligoguanylic acids are obtained by separating the products of alkaline degradation of 3′-5′-poly(G). The optical rotatory dispersion and hypochromism of both 2′-5′- and 3′-5′-oligoguanylic acids are studied at two different pH. The optical rotatory dispersion spectrum of 2′-5′-GpG is significantly different from that of 3′-5′-GpG. The magnitude of rotation of the long-wavelength peak of 2′-5′-GpG is larger than that of 3′-5′-GpG. This finding contradicts the explanation that the extra stability and more intense circular dichroism band of other 3′-5′-dinucleoside monophosphates is due to H-bond formation between 2′-OH and either the base or the phosphate oxygen. The end phosphate group has a marked effect on the spectrum of GpG between 230 and 250 mμ. In addition the optical rotatory dispersion spectra of 2′-5′ exhibit strong pH, temperature, and solvent dependence between 230 and 250 mμ. ΔH and AS for order ⇌ disorder transition is estimated to be 9.7 kcal/mole and 35.2 eu, respectively. The optical rotatory dispersion spectra of guanine-rich oligoribonucleotides, GpGpC, GpGpU, GpGpGpC, and GpGpGpU are compared to the calculated optical rotatory dispersion from the semiempirical expression of Cantor and Tinoco, using measured optical rotatory dispersion of dimers. Contrary to previous studies, agreement is found not at all satisfactory. However, optical rotatory dispersion of 3′-5′-GpGpGpC and GpGpGpU can be estimated from the semiempirical expression, if a next-nearest interaction parameter is introduced empirically. Such interaction parameter can be calculated from the measured properties of trinucleotide sequences like GpGpG, GpGpC, and GpGpU, assuming that only the nearest-neighbor interaction is important. The optical rotatory dispersion of single-stranded poly(G) is also predicted. The importance of syn-anti equilibrium and next-nearest-neighbor interaction in oligoguanylic acids is suggested as a probable explanation.