7 resultados para online blended learning
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider the problem of finding the best features for value function approximation in reinforcement learning and develop an online algorithm to optimize the mean square Bellman error objective. For any given feature value, our algorithm performs gradient search in the parameter space via a residual gradient scheme and, on a slower timescale, also performs gradient search in the Grassman manifold of features. We present a proof of convergence of our algorithm. We show empirical results using our algorithm as well as a similar algorithm that uses temporal difference learning in place of the residual gradient scheme for the faster timescale updates.
Resumo:
In this paper, we have proposed an anomaly detection algorithm based on Histogram of Oriented Motion Vectors (HOMV) 1] in sparse representation framework. Usual behavior is learned at each location by sparsely representing the HOMVs over learnt normal feature bases obtained using an online dictionary learning algorithm. In the end, anomaly is detected based on the likelihood of the occurrence of sparse coefficients at that location. The proposed approach is found to be robust compared to existing methods as demonstrated in the experiments on UCSD Ped1 and UCSD Ped2 datasets.
Resumo:
In this paper, we study different methods for prototype selection for recognizing handwritten characters of Tamil script. In the first method, cumulative pairwise- distances of the training samples of a given class are used to select prototypes. In the second method, cumulative distance to allographs of different orientation is used as a criterion to decide if the sample is representative of the group. The latter method is presumed to offset the possible orientation effect. This method still uses fixed number of prototypes for each of the classes. Finally, a prototype set growing algorithm is proposed, with a view to better model the differences in complexity of different character classes. The proposed algorithms are tested and compared for both writer independent and writer adaptation scenarios.
Resumo:
We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.
Resumo:
In this paper we propose a new algorithm for learning polyhedral classifiers which we call as Polyceptron. It is a Perception like algorithm which updates the parameters only when the current classifier misclassifies any training data. We give both batch and online version of Polyceptron algorithm. Finally we give experimental results to show the effectiveness of our approach.