4 resultados para oligothiophene

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25 degrees having an average inter-molecular separation of similar to 5 angstrom. Interestingly, we find an overall tilt angle of 43 degrees between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the synthesis of an oligothiophene having a donor acceptor donor (D-A-D) chromophore with hydrogen bonding groups is described. The D-A-D molecule was demonstrated to self-organize via intermolecular H-bonding between barbituric acid units. Interactions between the oligothiophene subunits were also found to be important, affording nanoribbons that could be observed by atomic force and transmission electron microscopy. The applicability of the oligothiophene for organic electronic applications was investigated by fabricating organic field-effect transistors (OFETs) and organic photovoltaic devices. The OFET measurements yielded p-type mobility of 7 x 10(-7) cm(2)/(Vs), and when blended with C(60)-PCBM, the photovoltaic efficiency was observed to be 0.18%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new solution processable, low band gap donor-acceptor (D-A) copolymers (P1 and P2) comprising a cyclopentac] thiophene (CPT) based oligomers as donors and benzoc]1,2,5] selenadiazole (BDS) and 2-dodecyl1,2,3]-benzotriazole (BTAz) as acceptors were synthesized and characterized and their field effect transistor properties were studied. The internal charge transfer interaction between the electron-donating CPT based oligothiophene and the electron-accepting BDS or BTAz unit effectively reduces the band gap in polymers to 1.3 and 1.66 eV with low lying highest occupied molecular orbital (HOMO). The absorption spectrum of P1 was found to be more red shifted than that of P2 because of incorporation of the more electron-withdrawing BDS unit. The color of neutral P1 was found to be green in both solution and film states with two major bands in the absorption spectra; however, neutral P2 revealed one dominant absorption exhibiting red color in both solution and film state which could be attributed to the less electron-withdrawing effect of the BTAz unit. The polymers were further characterized by GPC, TGA, DSC and cyclic voltammetry. P1 and P2 exhibited charge carrier mobilities as high as 9 x 10(-3) cm(2) V-1 s(-1) and 2.56 x 10(-3) cm 2 V-1 s(-1), respectively with the current on/off ratio (I-on/I-off) in the order of 10(2).