7 resultados para nosocomial diarrhoea

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

VP6, the intermediate capsid protein of the virion, specifies subgroup specificity of rotavirus, It is also the most conserved, both at nucleotide and amino acid levels, among group A rotaviruses and is the target of choice for rotavirus detection, In this study we report the sequence of the subgroup I (SGI)-specific VP6 from the serotype G2 strain IS2 isolated from a child suffering from acute diarrhoea in Bangalore ana its comparison with the published VP6 sequences. Interestingly, IS2 gene 6 shared highest homology with that from bovine UK strain and the protein contained substitutions by lysine at amino acid positions 97 and 134, In contrast, the amino acids Met and Glu/Asp at these respective positions are highly conserved in all the other group A rotaviruses sequenced so far, These observations have obvious implications for the evolution of serotype G2 and G2-like strains circulating in India, The SGI VP6, of a human rotavirus, possessing epitopes that are conformationally similar to those found in the native protein in the virion, was successfully expressed in E. coli and purified for the first time by single-step affinity chromatography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands In Salmonella genome the existence of 44 LTTRs has been documented These LTTRs regulate bacterial stress response. systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a Successful pathogen...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotavirus is a major cause of acute infantile diarrhoea worldwide. The virus genome consists of 11 segments of double-stranded RNA that codesfor six structural proteins (VP1-6) and six non-structural proteins(NSP1-6). NSPs are proteins expressed from the virus genome in the infected cell, but are not incorporated into the mature virus article. NSPs play an essential role in virus replication, morphogenesis and pathogenesis, and most of them exhibit multifunctional properties. Structure-function analysis of the NSPs is essential for understanding the molecular mechanisms by which the virus circumvents host innate immune responses, inhibits cellular protein synthesis, hijacks the protein synthetic machinery for its own propagation and manifests the disease process. Because of their essential roles in virus biology, NSPs represent potential targets for the development of antiviral agents. Determination of the three-dimensional structure of NSPs has been hindered due to low-level expression and aggregation. To date, the complete three-dimensional structure of only NSP2 has been determined. The structures of the N- and C-terminal domains of NSP3 and the diarrhoea-inducing domain of NSP4 have also been determined. This review primarily covers the structural and biological functions of the NSPs whose three-dimensional structural aspects have been fully or partially understood, but provides a brief account of other NSPs and the structural features of the mature virion as determined by electron cryomicroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited 'long' RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as CIO. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5' and 3' terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP 1 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Diseases from Staphylococcus aureus are a major problem in Indian hospitals and recent studies point to infiltration of community associated methicillin resistant S. aureus (CA-MRSA) into hospitals. Although CA-MRSA are genetically different from nosocomial MRSA, the distinction between the two groups is blurring as CA-MRSA are showing multidrug resistance and are endemic in many hospitals. Our survey of samples collected from Indian hospitals between 2004 and 2006 had shown mainly hospital associated methicillin resistant Staphylococcus aureus (HA-MRSA) carrying staphylococcal cassette chromosome mec (SCCmec) type III and IIIA. But S. aureus isolates collected from 2007 onwards from community and hospital settings in India have shown SCCmec type IV and V cassettes while several variations of type IV SCCmec cassettes from IVa to IVj have been found in other parts of the world. In the present study, we have collected nasal swabs from rural and urban healthy carriers and pus, blood etc from in patients from hospitals to study the distribution of SCCmec elements and sequence types (STs) in the community and hospital environment. We performed molecular characterization of all the isolates to determine their lineage and microarray of select isolates from each sequence type to analyze their toxins, virulence and immune-evasion factors. Results: Molecular analyses of 68 S. aureus isolates from in and around Bengaluru and three other Indian cities have been carried out. The chosen isolates fall into fifteen STs with all major clonal complexes (CC) present along with some minor ones. The dominant MRSA clones are ST22 and ST772 among healthy carriers and patients. We are reporting three novel clones, two methicillin sensitive S. aureus (MSSA) isolates belonging to ST291 (related to ST398 which is live stock associated), and two MRSA clones, ST1208 (CC8), and ST672 as emerging clones in this study for the first time. Sixty nine percent of isolates carry Panton-Valentine Leucocidin genes (PVL) along with many other toxins. There is more diversity of STs among methicillin sensitive S. aureus than resistant ones. Microarray analysis of isolates belonging to different STs gives an insight into major toxins, virulence factors, adhesion and immune evasion factors present among the isolates in various parts of India. Conclusions: S. aureus isolates reported in this study belong to a highly diverse group of STs and CC and we are reporting several new STs which have not been reported earlier along with factors influencing virulence and host pathogen interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a Gram-positive nosocomial pathogen. The prevalence of multidrug-resistant S. aureus strains in both hospital and community settings makes it imperative to characterize new drug targets to combat S. aureus infections. In this context, enzymes involved in cell-wall maintenance and essential amino-acid biosynthesis are significant drug targets. Homoserine dehydrogenase (HSD) is an oxidoreductase that is involved in the reversible conversion of l-aspartate semialdehyde to l-homoserine in a dinucleotide cofactor-dependent reduction reaction. HSD is thus a crucial intermediate enzyme linked to the biosynthesis of several essential amino acids such as lysine, methionine, isoleucine and threonine.