366 resultados para nonlinear propagation
em Indian Institute of Science - Bangalore - Índia
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
3-D KCL are equations of evolution of a propagating surface (or a wavefront) Omega(t), in 3-space dimensions and were first derived by Giles, Prasad and Ravindran in 1995 assuming the motion of the surface to be isotropic. Here we discuss various properties of these 3-D KCL.These are the most general equations in conservation form, governing the evolution of Omega(t) with singularities which we call kinks and which are curves across which the normal n to Omega(t) and amplitude won Omega(t) are discontinuous. From KCL we derive a system of six differential equations and show that the KCL system is equivalent to the ray equations of 2, The six independent equations and an energy transport equation (for small amplitude waves in a polytropic gas) involving an amplitude w (which is related to the normal velocity m of Omega(t)) form a completely determined system of seven equations. We have determined eigenvalues of the system by a very novel method and find that the system has two distinct nonzero eigenvalues and five zero eigenvalues and the dimension of the eigenspace associated with the multiple eigenvalue 0 is only 4. For an appropriately defined m, the two nonzero eigenvalues are real when m > 1 and pure imaginary when m < 1. Finally we give some examples of evolution of weakly nonlinear wavefronts.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.
Weakly nonlinear acoustic wave propagation in a nonlinear orthotropic circular cylindrical waveguide
Resumo:
Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.
Resumo:
In this paper the kinematics of a weak shock front governed by a hyperbolic system of conservation laws is studied. This is used to develop a method for solving problems, involving the propagation of nonlinear unimodal waves. It consists of first solving the nonlinear wave problem by moving along the bicharacteristics of the system and then fitting the shock into this solution field, so that it satisfies the necessary jump conditions. The kinematics of the shock leads in a natural way to the definition of ldquoshock-raysrdquo, which play the same role as the ldquoraysrdquo in a continuous flow. A special case of a circular cylinder introduced suddenly in a constant streaming flow is studied in detail. The shock fitted in the upstream region propagates with a velocity which is the mean of the velocities of the linear and the nonlinear wave fronts. In the downstream the solution is given by an expansion wave.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.
Resumo:
Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.