29 resultados para nitrogen-functionalized carbon nanofiber

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes containing small amounts of nitrogen are produced by the pyrolysis of aza-aromatics such as pyridine, methylpyrimidine and triazine over cobalt nanoparticles in an Ar atmosphere; good yields of such nanotubes are obtained by carrying out the pyrolysis of a mixture of pyridine and Fe(CO)(5) in flowing Ar + H-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the Bangalore sewage is treated in three streams namely Bellandur (K&C Valley),Vrishabhavati and Hebbal-Nagavara stream systems. Among these it is estimated that out of a total of about 500MLD of partially treated sewage is let into the Bellandur tank. We estimate that a total of about 77t N non-industrial anthropogenic nitrogen efflux (mainly urine and excreta) in Bangalore city. This is distributed between that handled by the three sewage streams, soak-pits and land deposition. About 17-24.5t N enters the Bellandur tank daily. This has been happening over few decades and our observations suggest that this approximately 380ha tank is functioning as a C and N removal system with reasonable efficiency. The ammoniacal and nitrate nitrogen content of the water at the discharge points were estimated and found that over 80% of the nitrogen influx and over 75% of the C influx is removed by this tank system. We observed that there are three nitrogen sinks namely bacterial, micro-algal and macrophytes. The micro-algal fraction is dominated by Microcystis and Euglenophyceae members and they appear to constitute a significant fraction. Water hyacinth represents the single largest representative of the macrophytes. This tank has been functioning in this manner for over three decades. We attempt to study this phenomenon from a material balance approach and show that it is functioning with a reasonable degree of satisfaction as a natural wetland. As the population served and concomitant influx into this wetland increases, there is a potential for the system to be overloaded and to collapse. Therefore a better understanding of its function and the need for maintenance is discussed in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 degrees C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm(-1) (C-N stretching) and 1600 cm(-1) (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm(-1) and 1576 cm(-1) respectively. XPS core level spectra of C 1s and N 1s show the formation of pi bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is similar to 100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. A two zone furnace with a uniform temperature over a length of 20 cm in both the zones was built. The precursor Azabenzimidazole (C6H5N3) taken in a quartz tube was evaporated at zone A and pyrolysed at zone B at a temperature of 800 degrees C. The FTIR spectrum of the prepared sample shows peaks at 1272 cm(-1) and 1591 cm(-1) corresponding to C-N stretching and C=N respectively, which confirms the bonding of nitrogen with carbon. Raman D and G peaks are observed at 1357 cm(-1) and 1560 cm(-1) respectively. X-ray photoelectron spectroscopy (XPS) shows the formation of pi bonding between carbon and nitrogen atoms. These observations along with XRD analysis show the formation of crystallites of alpha-C3N4 and beta-C3N4 in the background of graphitic C3N4. The size of the nanocrystals estimated from the SEM images is similar to 100 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C4H5N), Pyrrolidine (C4H9N), Azabenzimidazole (C6H5N3) and Triazine (C6H15N3) were used as precursors. The vibrational modes observed for C–N and C  =  N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscosity of five binary gas mixtures - namely, oxygen-hydrogen, oxygen-nitrogen, oxygen-carbon dioxide, carbon dioxide-nitrogen, carbon dioxide-hydrogen - and two ternary mixtures - oxygen-nitrogen-carbon dioxide and oxygen-hydrogen-carbon dioxide - were determined at ambient temperature and pressure using an oscillating disk viscometer. The theoretical expressions of several investigators were in good agreement with the experimental results obtained with this viscometer. In the case of the ternary gas mixture oxygen-carbon dioxide-nitrogen, as long as the volumetric ratio of oxygen to carbon dioxide in the mixture was maintained at 11 to 8, the viscosity of the ternary mixture at ambient temperature and pressure remained constant irrespective of the percentage of nitrogen present in the mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utility of a soil microbe, namely Bacillus polymyxa, in the removal of organic reagents such as dodecylamine, ether diamine, isopropyl xanthate and sodium oleate from aqueous solutions is demonstrated. Time-bound removal of the above organic reagents from an alkaline solution was investigated under different experimental conditions during bacterial growth and in the presence of metabolites by frequent monitoring of residual concentrations as a function of time, reagent concentration and cell density. The stages and mechanisms in the biodegradation process were monitored through UV-visible and FTIR spectroscopy. Surface chemistry of the bacterial cells as well as the biosorption tendency for various organics were also established through electrokinetic and adsorption density measurements. Both the cationic amines were found to be biosorbed followed by their degradation through bacterial metabolism. The presence of the organic reagents promoted bacterial growth through effective bacterial utilization of nitrogen and carbon from the organics. Under optimal conditions, complete degradation and bioremoval of all the organics could be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyolefin based blends have tremendous commercial importance in view of their exceptional properties. In this study the interface of a biphasic polymer blend of PE (polyethylene) and PEO (polyethylene oxide) has been tailored to reduce the interfacial tension between the phases and to render finer morphology. This was accomplished by employing various strategies like addition of maleated PE (PE grafted maleic anhydride), immobilizing PE chains, ex situ, onto MWNTs by covalent grafting, and in situ grafting of PE chains onto MWNTs during melt processing. Multiwalled nanotubes (MWNTs) with different surface functional groups have been synthesized either a priori or were facilitated during melt mixing at higher temperature. NH2 terminated MWNTs were synthesized by grafting ethylene diamine (EDA) onto carboxyl functionalized carbon nanotubes (COOH(MWNTs) and further, was used to reactively couple with maleated PE to immobilize PE chains on the surface of MWNTs. The covalent coupling of maleated PE with NH2 terminated MWNTs was also realized in situ in the melt extruder at high temperature. Both NH2 terminated MWNTs and the in situ formed PE brush on MWNTs during melt mixing, revealed a significant improvement in the mechanical properties of the blend besides remarkably improving the dispersion of the minor phase (PEO) in the blends. Structural properties of the composites were evaluated and the tensile fractured morphology was assessed using scanning electron microscopy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.