16 resultados para nitrobenzene

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed polarographic (a.c. and d.c.) and coulometric investigation of nitrobenzene has been made at various pH values in the presence of different concentrations of ethanol. Below pH 4.7, two waves are apparent but above this pH, the second wave does not appear. Coulometric evidence indicates that the first and second waves correspond to the four-and two-electron processes, respectively. The coulometric method was not applicable in sodium hydroxide and sodium acetate solutions. When the diffusion coefficients (from the diaphragm cell) are used in the Ilkovic equation, no reliable conclusions can be reached for the number of electrons involved in the reduction process in alkaline solutions. The a.c. polarographic method gives evidence for the formation of species such as: C6H5NO2H22+, C6H5NO2− and C6H5NO22−. Analysis of d.c. polarographic data by Delahay's treatment of irreversible waves, indicates that the number of electrons involved in the rate-determining step is 2. In sodium hydroxide solutions, however, the first main wave is split indicating more than one rate-determining step. The results presented in this paper indicate that the first wave in the reduction of nitrobenzene is a four-electron process at all pH values. The second wave, which appears below pH 4.7, corresponds to a two-electron process irrespective of wave heights. The difference in the a.c. polarographic behaviour in acid and alkaline solutions has given evidence for the formation of species like C6H5NO2H2, C6H5NO2−, and C6H5NO22.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the SrFeO3-delta photocatalyst was synthesized by a solution combustion method and applied for the photocatalytic degradation of aqueous nitrobenzene in the presence and absence of H2O2. The SrFeO3-delta photocatalyst was characterized by XRD, FT-IR, FE-SEM, TEM, TG-DTG, XPS, and UV visible spectroscopy. The band gap energy of SrFeO3-delta was found to be 3.75 eV which lies in the UV region. The XPS results indicate that the oxidation state of Sr and Fe in SrFeO3-delta was 2+ and 3+, respectively, and the surface atomic ratio of Sr and Fe is 0.995. The photocatalytic activity reveals that the degradation of nitrobenzene over the SrFeO3-delta catalyst itself (UV/SFO) is superior compared to SrFeO3-delta in the presence of H2O2 (UV/SFO/H2O2) with a degradation efficiency of 99-96%. The degradation of nitrobenzene obeys first-order kinetics in both UV/SFO and UV/SFO/H2O2 processes. The decrease in degradation efficiency with UV/SFO/H2O2 was attributed due to the formation of strontium carbonate on the photocatalyst surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monothiobenzoate (MTB) (Chemical Equation Presented) complexes with the molecular formulas Cr(MTB)3, [Ni(MTB)2]n, [Zn(MTB)2]n, [Cd(MTB)2]n, [Hg(MTB)2]n, [Cu(MTB)]n, and [Ag(MTB)]n have been prepared and studied. All the complexes are nonionic in acetonitrile. Only the chromium complex is soluble in nitrobenzene and found to be monomeric cryoscopically. The thiobenzoate ligand appears to be asymmetrically chelated in Cr(III) and Cd(II) complexes, with stronger oxygen and sulfur coordination, respectively, while practically symmetrically coordinated in Ni(II) and Zn(II) complexes. These four complexes are assigned distorted octahedral structures around the metal ion. The coordination in Hg(II), Cu(I), and Ag(I) complexes is mainly through sulfur indicating the monodentate nature of the thiobenzoate ligand in these complexes. The coordination of monothiobenzoate ion in the complexes has been rationalized in terms of "hard" and "soft" acid-base concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula Cu(BPBI)2X2, nH2O [X= Cl-, Br-, NO3 or OAc- (n = O) and X = NO3- or 1 2SO42-(n = 2H2O)] have been prepared. The complexes are found to be nonelectrolytes in nitrobenzene. Conductivity in nonaqueous media, magnetic susceptibilities and i.r. and electronic spectra of the complexes are reported. A tetragonally distorted octahedral structure has been suggested for these complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thorium(IV) is known to form high coordination-number complexes. An attempt has therefore been made to determine the effect of anions on the coordination complexes of diphenyl sulphoxide (DPSO) with thorium(IV). The complexes formed have the formulae [Th(DPSO)6](ClO4)4, [Th(DPSO)4Cl4], [Th(DPSO)4Br4], [Th(DPSO)6I2]I2, [Th(DPSO)4(NCS)4]and [Th(DPSO)3(NO3)4]. In all the complexes, DPSO is coordinated to the metal ion through its oxygen. The electrical conductances in nitrobenzene and in nitromethane, and ebullioscopic molecular weights in acetonitrile, show that the perchlorate and iodide complexes behave as 1:4 and 1:2 electrolytes, respectively; while the other complexes are monomeric and non-electrolytes. The infrared spectra of the solid complexes indicate the ionic nature of the perchlorate, the bidentate nature of the nitrate and the coordination of the thiocyanate through its nitrogen. [Th(DPSO)4Cl4], [Th(DPSO)4Br4]and [Th-(DPSO)3 (NO3)4]decompose endothermically while [Th(DPSO)6](ClO4)4 and [Th(DPSO)4(NCS)4]decompose exothermically, both in air and in nitrogen. The perchlorate complex has octahedral symmetry around the thorium, the halo- and the thiocyanato complexes are 8-coordinate, probably with square antiprismatic structures, while the nitrate complex is 11-coordinate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Anhydrous aluminium chloride reacts with phosphorus oxychloride to give a complex with a composition AlCl3.2 POCl3 which can be prepared in the form of a free flowing powder. 2. The phosphorus oxychloride-aluminium chloride complex in nitrobenzene dissociates into AlCl3.POCl3 and POCl3 as indicated by the cryoscopic measurements. 3. The solution of the complex in nitrobenzene has a higher specific conductivity than the corresponding electrical conductivities of individual components. Similar higher electrical conductance is observed when the two components are mixed in nitrobenzene in different proportions. 4.When a solution of anhydrous aluminium chloride in nitrobenzene is titrated conductometrically against a solution of phosphorus oxychloride in nitrobenzene, a limiting value in the conductivity is reached at point corresponding to the molecular composition, the components in the ratio of 1:2 AlCl3: POCl3 in solution. 5. The absorption maxima of the complex in nitrobenzene solution differ from the absorption maximum of the individual components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron(II) complexes of 1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine, Apy) and pyridine N-oxide (PyO), having the formulae [Fe(Apy)6](ClO4)2, Fe(Apy)2Cl2, Fe(Apy)2Br2, Fe(Apy)4I2, [Fe(PyO)3Cl3]2 . 2H2O, [Fe(PyO)Cl2 . 2H2O]2, [Fe(PyO)3Br2]2 and [Fe(PyO)6]I2 have been prepared and characterized. [Fe(Apy)6](ClO4)2 in nitrobenzene and [Fe(PyO)6]I2 in acetonitrile behave as 1:2 electrolytes; Fe(Apy)4I2 shows considerable dissociation while Fe(Apy)2Cl2 and Fe(Apy)2Br2 are non-electrolytes and monomeric in nitrobenzene. [Fe(PyO)3Cl2]2 . 2H2O and [Fe(PyO)3Br2]2 in nitrobenzene and [Fe(PyO)Cl2 . 2H2O]2 in acetonitrile behave as non-electrolytes. All the complexes are spin-free. The i.r. spectra show that the oxygens of the CO and NO groups are the donors in the Apy and PyO complexes. A large decrease in the NO stretching frequency in [Fe(PyO)Cl2. 2H2O]2 suggests PyO acts as a bridge forming a binuclear complex. The chloro and the bromo complexes of Apy have been assigned pseudo tetrahedral structures while the rest of the complexes have octahedral or near octahedral configurations around the iron(II) on the basis of the magnetic moments and the electronic transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,4-Lutidine-1-oxide (2,4-LutO) complexes of lanthanide perchlorates of the formulae Ln2(2,4-LutO)13(ClO4)6 (Ln = Pr and Nd) and Ln2(2,4-LutO)15 (ClO4)6 (Ln = La, Tb, Dy, Ho and Yb) have been prepared and characterised by chemical analysis, IR, NMR, conductance and electronic spectral data. Proton NMR data along with the IR data show that the ligand coordinates to the metal ion through the oxygen. Conductance data of the complexes in acetone and nitrobenzene indicate that the perchlorate is not coordinated to the metal ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pd-coated Ni nanoparticles of 50 +/- 15 nm size are prepared by the polyol method and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry analysis. Surface coverage of Pd on Ni particles is less than a monolayer for 0.5 and 1 at% Pd-coated Ni. Quantitative conversion of nitrobenzene to aniline is observed over these Pd-coated Ni particles at 27degreesC under one atmospheric pressure of hydrogen. 0.5 and 1 at% Pd-coated Ni exhibits 10 times greater activity than that of typical colloidal palladium and platinum catalysts and 2.5 times higher activity than commercial 5 wt% Pd/C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.