46 resultados para next generation sequencing
em Indian Institute of Science - Bangalore - Índia
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.
Resumo:
A new breed of microscopy techniques is coming to the forefront of optical imaging. They enhance the attainable 3D resolution of imaging in live and ``fixed'' cells' (with minimal structural perturbation) by greater than tenfold, bringing subcellular structures in sharp focus Along with long-term imaging, deep tissue and high throughput capablities, new insights in various fields of biology are being generated. The main set of these next-generation optical microscopy techniques along with select applications is described in this article.
Resumo:
Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.
Resumo:
Cancer is a complex disease which arises due to a series of genetic changes related to cell division and growth control. Cancer remains the second leading cause of death in humans next to heart diseases. As a testimony to our progress in understanding the biology of cancer and developments in cancer diagnosis and treatment methods, the overall median survival time of all cancers has increased six fold one year to six years during the last four decades. However, while the median survival time has increased dramatically for some cancers like breast and colon, there has been only little change for other cancers like pancreas and brain. Further, not all patients having a single type of tumour respond to the standard treatment. The differential response is due to genetic heterogeneity which exists not only between tumours, which is called intertumour heterogeneity, but also within individual tumours, which is called intratumoural heterogeneity. Thus it becomes essential to personalize the cancer treatment based on a specific genetic change in a given tumour. It is also possible to stratify cancer patients into low- and high-risk groups based on expression changes or alterations in a group of genes gene signatures and choose a more suitable mode of therapy. It is now possible that each tumour can be analysed using various high-throughput methods like gene expression profiling and next-generation sequencing to identify its unique fingerprint based on which a personalized or tailor-made therapy can be developed. Here, we review the important progress made in the recent years towards personalizing cancer treatment with the use of gene signatures.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
With the increasing adoption of wireless technology, it is reasonable to expect an increase in file demand for supporting both real-time multimedia and high rate reliable data services. Next generation wireless systems employ Orthogonal Frequency Division Multiplexing (OFDM) physical layer owing, to the high data rate transmissions that are possible without increase in bandwidth. Towards improving file performance of these systems, we look at the design of resource allocation algorithms at medium-access layer, and their impact on higher layers. While TCP-based clastic traffic needs reliable transport, UDP-based real-time applications have stringent delay and rate requirements. The MAC algorithms while catering to the heterogeneous service needs of these higher layers, tradeoff between maximizing the system capacity and providing fairness among users. The novelly of this work is the proposal of various channel-aware resource allocation algorithms at the MAC layer. which call result in significant performance gains in an OFDM based wireless system.
Resumo:
In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Many next-generation distributed applications, such as grid computing, require a single source to communicate with a group of destinations. Traditionally, such applications are implemented using multicast communication. A typical multicast session requires creating the shortest-path tree to a fixed number of destinations. The fundamental issue in multicasting data to a fixed set of destinations is receiver blocking. If one of the destinations is not reachable, the entire multicast request (say, grid task request) may fail. Manycasting is a generalized variation of multicasting that provides the freedom to choose the best subset of destinations from a larger set of candidate destinations. We propose an impairment-aware algorithm to provide manycasting service in the optical layer, specifically OBS. We compare the performance of our proposed manycasting algorithm with traditional multicasting and multicast with over provisioning. Our results show a significant improvement in the blocking probability by implementing optical-layer manycasting.
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The next generation manufacturing technologies will draw on new developments in geometric modelling. Based on a comprehensive analysis of the desiderata of next generation geometric modellers, we present a critical review of the major modelling paradigms, namely, CSG, B-Rep, non-manifold, and voxel models. We present arguments to support the view that voxel-based modellers have attributes that make it the representation scheme of choice in meeting the emerging requirements of geometric modelling.
Resumo:
We develop an optimal, distributed, and low feedback timer-based selection scheme to enable next generation rate-adaptive wireless systems to exploit multi-user diversity. In our scheme, each user sets a timer depending on its signal to noise ratio (SNR) and transmits a small packet to identify itself when its timer expires. When the SNR-to-timer mapping is monotone non-decreasing, timers of users with better SNRs expire earlier. Thus, the base station (BS) simply selects the first user whose timer expiry it can detect, and transmits data to it at as high a rate as reliably possible. However, timers that expire too close to one another cannot be detected by the BS due to collisions. We characterize in detail the structure of the SNR-to-timer mapping that optimally handles these collisions to maximize the average data rate. We prove that the optimal timer values take only a discrete set of values, and that the rate adaptation policy strongly influences the optimal scheme's structure. The optimal average rate is very close to that of ideal selection in which the BS always selects highest rate user, and is much higher than that of the popular, but ad hoc, timer schemes considered in the literature.
Resumo:
This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.