5 resultados para news media models
em Indian Institute of Science - Bangalore - Índia
Resumo:
Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.
Resumo:
Six models (Simulators) are formulated and developed with all possible combinations of pressure and saturation of the phases as primary variables. A comparative study between six simulators with two numerical methods, conventional simultaneous and modified sequential methods are carried out. The results of the numerical models are compared with the laboratory experimental results to study the accuracy of the model especially in heterogeneous porous media. From the study it is observed that the simulator using pressure and saturation of the wetting fluid (PW, SW formulation) is the best among the models tested. Many simulators with nonwetting phase as one of the primary variables did not converge when used along with simultaneous method. Based on simulator 1 (PW, SW formulation), a comparison of different solution methods such as simultaneous method, modified sequential and adaptive solution modified sequential method are carried out on 4 test problems including heterogeneous and randomly heterogeneous problems. It is found that the modified sequential and adaptive solution modified sequential methods could save the memory by half and as also the CPU time required by these methods is very less when compared with that using simultaneous method. It is also found that the simulator with PNW and PW as the primary variable which had problem of convergence using the simultaneous method, converged using both the modified sequential method and also using adaptive solution modified sequential method. The present study indicates that pressure and saturation formulation along with adaptive solution modified sequential method is the best among the different simulators and methods tested.
Resumo:
We have modeled the rotation curves of 21 galaxies observed by Amram et al. (1992), by combining the effects of rigid rotation, gravity, and turbulence. The main motivation behind such modeling is to study the formation of coherent structures in turbulent media and explore its role in the large-scale structures of the universe. The values of the parameters such as mass, turbulent velocity, and angular velocity derived from the rotation curve fits are in good agreement with those derived from the prevalent models.
Resumo:
The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.
Resumo:
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.