29 resultados para network traffic analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.
Resumo:
Several replacement policies for web caches have been proposed and studied extensively in the literature. Different replacement policies perform better in terms of (i) the number of objects found in the cache (cache hit), (ii) the network traffic avoided by fetching the referenced object from the cache, or (iii) the savings in response time. In this paper, we propose a simple and efficient replacement policy (hereafter known as SE) which improves all three performance measures. Trace-driven simulations were done to evaluate the performance of SE. We compare SE with two widely used and efficient replacement policies, namely Least Recently Used (LRU) and Least Unified Value (LUV) algorithms. Our results show that SE performs at least as well as, if not better than, both these replacement policies. Unlike various other replacement policies proposed in literature, our SE policy does not require parameter tuning or a-priori trace analysis and has an efficient and simple implementation that can be incorporated in any existing proxy server or web server with ease.
Resumo:
Instruction reuse is a microarchitectural technique that improves the execution time of a program by removing redundant computations at run-time. Although this is the job of an optimizing compiler, they do not succeed many a time due to limited knowledge of run-time data. In this paper we examine instruction reuse of integer ALU and load instructions in network processing applications. Specifically, this paper attempts to answer the following questions: (1) How much of instruction reuse is inherent in network processing applications?, (2) Can reuse be improved by reducing interference in the reuse buffer?, (3) What characteristics of network applications can be exploited to improve reuse?, and (4) What is the effect of reuse on resource contention and memory accesses? We propose an aggregation scheme that combines the high-level concept of network traffic i.e. "flows" with a low level microarchitectural feature of programs i.e. repetition of instructions and data along with an architecture that exploits temporal locality in incoming packet data to improve reuse. We find that for the benchmarks considered, 1% to 50% of instructions are reused while the speedup achieved varies between 1% and 24%. As a side effect, instruction reuse reduces memory traffic and can therefore be considered as a scheme for low power.
Resumo:
The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.
Resumo:
The IEEE 802.1le medium access control (MAC) standard provides distributed service differentiation or Quality-of- Service (QoS) by employing a priority system. In 802.1 le networks, network traffic is classified into different priorities or access categories (ACs). Nodes maintain separate queues for each AC and packets at the head-of-line (HOL) of each queue contend for channel access using AC-specific parameters. Such a mechanism allows the provision of differentiated QoS where high priority, performance sensitive traffic such as voice and video applications will enjoy less delay, greater throughput and smaller loss, compared to low priority traffic (e. g. file transfer). The standard implicitly assumes that nodes are honest and will truthfully classify incoming traffic into its appropriate AC. However, in the absence of any additional mechanism, selfish users can gain enhanced performance by selectively classifying low priority traffic as high priority, potentially destroying the QoS capability of the system.
Resumo:
Electric power utilities are installing distribution automation systems (DAS) for better management and control of the distribution networks during the recent past. The success of DAS, largely depends on the availability of reliable database of the control centre and thus requires an efficient state estimation (SE) solution technique. This paper presents an efficient and robust three-phase SE algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation scheme to estimate the line flows, node voltage and loads at each node, based on the measured quantities. The SE cannot be executed without adequate number of measurements. The extension of the method to the network observability analysis and bad data detection is also discussed. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R:X ratio of lines. The results for a typical network are presented for illustration purposes. © 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Mobile ad-hoc network is a wireless ad-hoc network with dynamic network topology. The Dynamicity, due to the random node movement, and scarcity of resources lead to a challenge in monitoring the nodes in a MANET. Monitoring the lack of resources (bandwidth, buffer, and energy), misbehavior, and mobility at node level remains, a challenge. In a MANET the proposed protocol uses both static as well as mobile agents, where the mobile agents migrate to different clusters of the zones respectively, collect the node status information periodically, and provide a high level information to the static agent (which resides at the central node) by analyzing the raw information at the nodes. This, in turn, reduces the network traffic and conserves the workload of the central node, where a static agent is available with high level information and in coordination with other modules. The protocol has been tested in different size MANETs with variable number of nodes and applications. The results shown in the simulation indicates the effectiveness of the protocol.
Resumo:
We study the performance of cognitive (secondary) users in a cognitive radio network which uses a channel whenever the primary users are not using the channel. The usage of the channel by the primary users is modelled by an ON-OFF renewal process. The cognitive users may be transmitting data using TCP connections and voice traffic. The voice traffic is given priority over the data traffic. We theoretically compute the mean delay of TCP and voice packets and also the mean throughput of the different TCP connections. We compare the theoretical results with simulations.
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.
Resumo:
We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level. (C) 2010 American Institute of Physics. [doi:10.1063/1.3398025]
Resumo:
We provide a comparative performance analysis of network architectures for beacon enabled Zigbee sensor clusters using the CSMA/CA MAC defined in the IEEE 802.15.4 standard, and organised as (i) a star topology, and (ii) a two-hop topology. We provide analytical models for obtaining performance measures such as mean network delay, and mean node lifetime. We find that the star topology is substantially superior both in delay performance and lifetime performance than the two-hop topology.
Resumo:
A generalised formulation of the mathematical model developed for the analysis of transients in a canal network, under subcritical flow, with any realistic combination of control structures and their multiple operations, has been presented. The model accounts for a large variety of control structures such as weirs, gates, notches etc. discharging under different conditions, namely submerged and unsubmerged. A numerical scheme to compute and approximate steady state flow condition as the initial condition has also been presented. The model can handle complex situations that may arise from multiple gate operations. This has been demonstrated with a problem wherein the boundary conditions change from a gate discharge equation to an energy equation and back to a gate discharge equation. In such a situation the wave strikes a fixed gate and leads to large and rapid fluctuations in both discharge and depth.
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.