9 resultados para nanofluids

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar forced convection heat transfer from two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using the unsteady stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on heat transfer is examined and found to have a significant impact. Local and average Nusselt numbers are reported in connection with various nanoparticle, volume fraction, and Reynolds number for expansion ratio 2. The Nusselt number reaches peak values near the reattachment point and reaches asymptotic value in the downstream. Bottom wall eddy and volume fraction shows a significant impact on the average Nusselt number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar forced convection of nanofluids in a vertical channel with symmetrically mounted rib heaters on surfaces of opposite walls is numerically studied. The fluid flow and heat transfer characteristics are examined for various Reynolds numbers and nanoparticles volume fractions of water-Al2O3 nanofluid. The flow exhibits various structures with varying Reynolds number. Even though the geometry and heating is symmetric with respect to a channel vertical mid-plane, asymmetric flow and heat transfer are found for Reynolds number greater than a critical value. Introduction of nanofluids in the base fluid delays the flow solution bifurcation point, and the critical Reynolds number increases with increasing nanoparticle volume fraction. A skin friction coefficient along the solid-fluid interfaces increases and decreases sharply along the bottom and top faces of the heaters, respectively, due to sudden acceleration and deceleration of the fluid at the respective faces. The skin friction coefficient, as well as Nusselt numbers in the channel, increase with increasing volume fraction of nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on flow behaviour is examined and found significant impact. The flow response to Reynolds number in the presence of nanoparticles is examined. The presence of nanoparticles decreases the flow bifurcation Reynolds number. The size and the reattachment length of the bottom wall recirculation increase with increasing volume fraction and particle density. The effect of volume fraction and density of nanoparticles on friction factor is reported. The bottom wall recirculation strongly respond to the variation in volume faction and type of particles. However, weak response is observed for top wall recirculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov-Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr)=6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, a, is varied between 0 and 2. The range of nanoparticle volume fractions (phi) considered is 0 <= phi <= 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration-deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in alpha and phi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the heat transfer characteristics of thermally developing magnetohydroclynamic flow of nanofluid through microchannel are delineated by following a semi analytical approach. The combined influences of pressure driven flow, electroosmotic transport and magnetic field is taken into account for the analysis of the complex microscale thermal transport processes. Solutions for the normalized temperature distributions and the Nusselt number variations, considering the simultaneous interplay of electrokinetic effects (electroosmosis), magnetic effects, Joule heating and viscous dissipation are obtained, for constant wall temperature condition. Particular attention is paid to assess the role of nanolluids in altering the transport phenomena, through variations in the effective nanoparticle volume fractions, as well as the aggregate structure of the particulate phases. It is observed that magnetohydrodynamic effect reduces advective transport of the liquid resulting in gradual reduction of heat transfer. Increase in nanoparticle volume fraction shows decrease in heat transfer. Similar effects are observed with increase in aggregate sizes of the nanoparticles. The effect of the nanofluids on system irreversibility is also studied through entropy generation analysis due to flow and heat transfer in the microchannel. Total entropy generation is found to be dominant at the thermally developing region of the microchannel, whereas it drops sharply at the thermally developed region. Presence of nanoparticles in the base fluid reduces the total entropy generation in the microchannel, thereby indicating decrease in thermodynamic irreversibility with increasing nanoparticle volume fraction. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally known that addition of conducting or insulating particles to mineral transformer oil, lowers its breakdown strength, E-d. However, if the particulates are of molecular dimensions, or nanoparticles, (NPs), as they are called, the breakdown strength is seen to increase considerably. Recent experiments by the authors on oil cooled power equipment such as transformers showed that, nanofluids comprising NPs of selected oxides of iron, such as Fe(3)o(4), called magnetite, added to transformer oil increased the breakdown voltage of the virgin oil and more importantly a remarkable enhancement in the thermal conductivity and the viscosity and hence an increased loadability of the transformer for a given top oil temperature (TOT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vaporization characteristics of pendant droplets of various chemical compositions (like conventional fuels, alternative fuels and nanosuspensions) subjected to convective heating in a laminar air jet have been analyzed. Different heating conditions were achieved by controlling the air temperature and velocity fields around the droplet. A hybrid timescale has been proposed which incorporates the effects of latent heat of vaporization, saturation vapor pressure and thermal diffusivity. This timescale in essence encapsulates the different parameters that influence the droplet vaporization rate. The analysis further permits the evaluation of the effect of various parameters such as surrounding temperature, Reynolds number, far-field vapor presence, impurity content and agglomeration dynamics (nanosuspensions) in the droplet. Flow visualization has been carried out to understand the role of internal recirculation on the vaporization rate. The visualization indicates the presence of a single vortex cell within the droplet on account of the rotation and oscillation of the droplet due to aerodynamic load. External heating induced agglomeration in nanofluids leads to morphological changes during the vaporization process. These morphological changes and alteration in vaporization behavior have been assessed using high speed imaging of the diameter regression and Scanning Electron Microscopy images of the resultant precipitate. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the experimental data and their interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.