156 resultados para nanocrystalline metals

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanocrystalline metals frequently exhibit poor thermal stability, and the exothermic peak in differential scanning calorimetry is usually attributed to grain growth. We show from experiments on electrodeposited nano-Ni with varying levels of S, and tests with microcrystalline Ni and S powders, that the exothermic peak is associated with the formation of a nickel sulfide phase and concurrent grain growth. Analysis suggests that segregation plays a more important role in limiting grain growth than second-phase particles in nano-Ni. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposited nanocrystalline Ni films were processed with different levels of S, to evaluate the role of S on superplasticity. All the materials exhibited high strain rate superplasticity at a relatively low temperature of 777 K. Microstructural characterization revealed that the S was converted to a Ni3S2 phase which melts at 908 K; no S could be detected at grain boundaries. There was no consistent variation in ductility with S content. Superplasticity was associated with a strain rate sensitivity of similar to 0.8 and an inverse grain size exponent of similar to 1 both of which are unusual observations in superplastic flow of metals. Based on the detailed experiments and analysis, it is concluded that superplasticity in nano-Ni is related to an interface controlled diffusion creep process, and it is not related to the presence of S at grain boundaries or a liquid phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of published literature on the biosorption of metals using nonliving biomass is presented. Factors such as pH, temperature, initial metal concentration, biomass loaning, the presence of co-ions and the pretreatment of biomass influence the metal uptake by biomass. Although few generalizations are possible, unified theor ies regarding the mechanism of uptake are not available. Therefore, the above aspects of metal biosorption have to be defined individually for each biomass and metal-ion pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture plays an important role in the frictional behavior and transfer layer formation of contacting surfaces. In the present investigation, basic experiments were conducted using an inclined pin-on-plate sliding apparatus to better understand the role of surface texture on the coefficient of friction and the formation of a transfer layer. In the experiments, soft HCP materials such as pure Mg and pure Zn were used for the pins and a hardened 080 M40 steel was used for the plate. Two surface parameters of the steel plates—roughness and texture—were varied in tests that were conducted at a sliding speed of 2 mm/s in ambient conditions under both dry and lubricated conditions. The morphologies of the worn surfaces of the pins and the formation of the transfer layer on the counter surfaces were observed using a scanning electron microscope. In the experiments, the occurrence of stick-slip motion, the formation of a transfer layer, and the value of friction were recorded. With respect to the friction, both adhesion and plowing components were analyzed. Based on the experimental results, the effect of surface texture on the friction was attributed to differences in the amount of plowing. Both the plowing component of friction and the amplitude of stick-slip motion were determined to increase surface textures that promote plane strain conditions and decrease the textures that favor plane stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assuming the grinding wheel surface to be fractal in nature, the maximum envelope profile of the wheel and contact deflections are estimated over a range of length scales. This gives an estimate of the 'no wear' roughness of a surface ground metal. Four test materials, aluminum, copper, titanium, and steel are surface ground and their surface power spectra were estimated. The departure of this power spectra from the 'no wear' estimates is studied in terms of the traction-induced wear damage of the surfaces. The surface power spectra in grinding are influenced by hardness and the power is enhanced by wear damage. No such correlation with hardness was found for the polished surface, the roughness of which is insensitive to mechanical properties and appears to be influenced by microstructure and physical properties of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification behaviour is described of two pure metals (Bi and Ni) and two eutectic alloys (A1-Ge and AI-Cu) under nonequilibrium conditions, in particular the microsecond pulsed laser surface melting. The resolidification behaviour of bismuth shows that epitaxial regrowth is the dominant mechanism. For mixed grain size, regrowth of larger grains dominates the microstructure and can result in the development of texture. In the case of nickel, epitaxial growth has been noted. For lower energy pulse-melted pool, grain refinement takes place, indicating nucleation of fresh nickel grains. The A1-Ge eutectic alloy indicates the nucleation and columnar growth of a metastable monoclinic phase from the melt-substrate interface at a high power density laser irradiation. An equiaxed microstructure containing the same monoclinic phase is obtained at a lower power density laser irradiation. It is shown that the requirement of solution partition acts as a barrier to eutectic regrowth from the substrate. The laser-melted pool of A1-Cu eutectic alloy includes columnar growth of c~-A1 and 0-A12Cu phase followed by the dendritic growth of A12Cu phase with ct-Al forming at the interdendritic space. In addition, a banded microstructure was observed in the resolidified laser-melted pool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Zn1-xMnxS films (0 less-than-or-equals, slant x less-than-or-equals, slant 0.25) were deposited on glass substrates by simple resistive thermal evaporation technique. All the films were deposited at 300 K in a vacuum of 2*10-6 m bar. All the films temperature dependence of resistivity revealed semiconducting behaviour of the samples. Hot probe test revealed that all the samples exhibited n-type conductivity. The nanohardness of the films ranges from 4.7 to 9.9 GPa, Young's modulus value ranging 69.7-94.2 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface between toluene and water has been employed to prepare ultrathin Janus nanocrystalline films of metal oxides, metal chalcogenides and gold, wherein the surface on the organic-side is hydrophobic and the aqueous-side is hydrophilic. We have changed the nature of the metal precursor or capping agent in the organic layer to increase the hydrophobicity. The strategy employed for this purpose is to increase the length of the alkane chain in the precursor or use a perfluroalkane derivative as precursor or as a capping agent. The hydrophobicity and hydrophilicity of the Janus films have been determined by contact angle measurements. The morphology of hydrophobic and hydrophilic sides of the film have been examined by field emission scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of diffusion and dislocation creep in nanocrystals needs to take into account the generally utilized low temperatures, high stresses and very fine grain sizes. In nanocrystals, diffusion creep may be associated with a nonlinear stress dependence and dislocation creep may involve a grain size dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a conclusive evidence of the operation of planar slip along with grain boundary mediated mechanisms has been reported during large strain deformation of nanocrystalline nickel. Dislocation annihilation mechanism such as mechanical recovery has been found to play an important role during the course of deformation. The evidences rely on x-ray based techniques, such as dislocation density determination and crystallographic texture measurement as well as microstructural observation by electron microscopy. The characteristic texture evolution in this case is an indication of normal slip mediated plasticity in nanocrystalline nickel.