6 resultados para models, genetic
em Indian Institute of Science - Bangalore - Índia
Resumo:
Competition between seeds within a fruit for parental resources is described using one-locus-two-allele models. While a �normal� allele leads to an equitable distribution of resources between seeds (a situation which also corresponds to the parental optimum), the �selfish� allele is assumed to cause the seed carrying it to usurp a higher proportion of the resources. The outcome of competition between �selfish� alleles is also assumed to lead to an asymmetric distribution of resources, the �winner� being chosen randomly. Conditions for the spread of an initially rare selfish allele and the optimal resource allocation corresponding to the evolutionarily stable strategy, derived for species with n-seeded fruits, are in accordance with expectations based on Hamilton�s inclusive fitness criteria. Competition between seeds is seen to be most intense when there are only two seeds, and decreases with increasing number of seeds, suggesting that two-seeded fruits would be rarer than one-seeded or many-seeded ones. Available data from a large number of plant species are consistent with this prediction of the model.
Resumo:
New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.
Resumo:
Using computer modeling of three-dimensional structures and structural information available on the crystal structures of HIV-1 protease, we investigated the structural effects of mutations, in treatment-naive and treatment-exposed individuals from India and postulated mechanisms of resistance in clade C variants. A large number of models (14) have been generated by computational mutation of the available crystal structures of drug bound proteases. Localized energy minimization was carried out in and around the sites of mutation in order to optimize the geometry of interactions present. Most of the mutations result in structural differences at the flap that favors the semiopen state of the enzyme. Some of the mutations were also found to confer resistance by affecting the geometry of the active site. The E35D mutation affects the flap structure in clade B strains and E35N and E35K mutation, seen in our modeled strains, have a more profound effect. Common polymorphisms at positions 36 and 63 in clade C also affected flap structure. Apart from a few other residues Gln-58, Asn-83, Asn-88, and Gln-92 and their interactions are important for the transition from the closed to the open state. Development of protease inhibitors by structure-based design requires investigation of mechanisms operative for clade C to improve the efficacy of therapy.
Resumo:
In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.
Resumo:
In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.