38 resultados para mineral rights

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct contact mechanism in bioleaching implies prior mineral adhesion of Acidithiobacillus ferrooxidans and subsequent enzymatic attack.Prior bacterial adaptation to sulfide mineral substrates influences bacterial ferrous ion oxidation rates. It is highly beneficial to understand major biooxidation mechanisms with reference to solution- and mineral-grown cells in order to optimize bioleaching reactions. For A. ferrooxidans grown in the presence of solid substrates such as sulfur, pyrite and chalcopyrite, bacterial adhesion is required for its enzymatic machinery to come into close contact for mineral dissolution.But when grown in solution substrate such as ferrous ions and thiosulfate, such an adhesion machinery is not required for substrate utilization. Proteinaceous compounds were observed on the surface of sulfur-grown cells. Such an induction of relatively hydrophobic proteins and down regulation of exposed polysaccharides leads to changes in cell surface chemistry. Sulfur-grown and pyrite- and chalcopyrite-grown bacterial cells were found to be more efficient in the bioleaching of chalcopyrite than those grown in the presence of ferrous ions and thiosulfate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-A-vis galena are contributory factors for the selective separation of sphalerite from galena. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milling is an energy intensive process and it is considered as one of the most energy inefficient processes. Electrical and mechanical shock loading can be used to develop a pre-treatment methodology to enhance energy efficiency of comminution and liberation of minerals. Coal and Banded Hematite Jasper (BHJ) Iron ores samples were taken for the study to know the effect of shock loading. These samples were exposed to 5 electric shocks of 300 kV using an electric shock loading device. A diaphragmless shock tube was used to produce 3 and 6 compressed air shocks of Mach number 2.12 to treat the coal and Iron ore samples. Microscopic, comminution and liberation studies were carried out to compare the effectiveness of these approaches. It was found that electric shock loading can comminute the coal samples more effectively and increases the yield of carbon by 40% at 1.6 gm/cc density over the untreated coal samples. Mechanical shock loading showed improved milling performance for both the materials and 12.90% and 8.1% reduction in the D-80 of the particles was observed during grinding for treated samples of coal and iron, respectively. Liberation of minerals in BHJ Iron ore was found unaffected due to low intensity of the mechanical shock waves and non conductivity of minerals. Compressed air based shock loading is easier to operate than electrical shock loading and it needs to be explored further to improve the energy efficacy of comminution. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of two bacterial strains namely, Bacillus licheniformis and Bacillus firmus in the production of bioflocculants was made. The highest bioflocculant yield of 16.55 g/L was obtained from B. licheniformis (L) and 10 g/L from B. firmus (F). The bioflocculants obtained from the bacterial species were water soluble and insoluble in organic solvents. FTIR spectral analysis revealed the presence of hydroxyl, carboxyl and sugar derivatives in the bioflocculants. Thermal characterization by differential scanning calorimetry (DSC) showed the crystalline transition and the melting point (T-m) at 90-100 degrees C. Effects of bioflocculant dosage and pH on the flocculation of clay fines were evaluated. Highest bioflocculation efficiency on kaolin clay suspensions was observed at an optimum bioflocculant dosage of 5 g/L. The optimum pH range for the maximum bioflocculation was at pH 7-9. Bioflocculants exhibited high efficiency in dye decolorization. The maximum Cr (VI) removal was found to be 85 % for L (bioflocculant dosage at 2 g/L). This study demonstrates that microbial bioflocculants find potential applications in mineral processing such as selective flocculation of mineral fines, decolorization of dye solutions and in the remediation of toxic metal solutions. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

India has been acknowledged as a large reservoir of nature's random mutation, an original 'rich' source of knowledge in the context of international genome studies. Human genome knowledge and the possible understanding of the basis of uniqueness of each individual in chemical terms has presented a number of inescapable challenges to our own jurisprudence philosophies and our ethical sensibilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments on the leaching of copper from chalcopyrite mineral by the bacterium Thiobacillus ferrooxidans show that, in the presence of adequate amounts of sulphide, iron-grown bacteria preferentially oxidise sulphur in the ore (through direct attachment) rather than ferrous sulphate in solution. At 20% pulp density, the leaching initially takes place by a predominantly direct mechanism. The cell density in the liquid phase increases, but the Fe2+ is not oxidised. However, in the later stages when less solid substrate is available and the cell density becomes very high, the bacteria start oxidising Fe2+ in the liquid phase, thus contributing to the indirect mechanism of leaching. Contrary to expectations, the rate of leaching increased with increasing particle size in spite of the decreasing specific surface area. This has been found to be due to increasing attachment efficiency with increase in particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a detailed description on crustal metamorphic signatures of garnet-clinopyroxene-quartz-rutile-bearing high P-T granulites, Samgot unit, Imajingang belt, northwestern Korean Peninsula that formed during Permo-Triassic regional metamorphism related to the amalgamation of East Asian continental fragments. Lenses and blocks of high P-T granulites and garnet-bearing leucosomes occur within mafic metamorphic rocks (mainly amphibolites). The mafic blocks comprise relicts of granoblastic garnet and clinopyroxene with medium-grained quartz and rutile. These relict mineral assemblages are confined to local micro-domains and constitute remnants of peak metamorphism. Plagioclase and amphibole form only as retrograde phases in medium ton coarse-grained moats that rim grain boundaries between relict peak mineral assemblages. This microstructure represents the reaction between garnet, clinopyroxene, quartz and rutile in the presence of melt to form amphibole, plagioclase and titanite with minor biotite. The leucosome domains consist of euhedral garnets within the quartz-K feldspar-plagioclase (granitic) matrix, probably representing peritectic garnet growth along with melting. The rare earth element (REE) composition of minerals also support the peritectic garnet growth with a positive Eu/Eu* (positive Eu anomaly), while the relict garnet shows a slight negative anomaly typical for high-grade granulites. The peak-metamorphic conditions calculated from thermodynamic modeling and compositional isopleths indicate a temperature around c. 900 degrees C at a pressure around c. 20 kbar. The present P-T path indicates a clear multi-stage decompression history with initial decompression and cooling followed by a stage of decompression during hydration possibly during Late Triassic exhumation. The results from this study together with the presence of eclogites from the Hongsung area suggest that the Imjingang area and the western Gyeonggi massif likely resided at crustal levels deeper than those of the eastern and southern part of the Gyeonggi massif. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eclogites and their retrogressed equivalents from the eastern unit of the Glenelg-Attadale Inlier in NW Scotland preserve much microstructural evidence that indicates that very high-pressure/temperature eclogite facies conditions were reached, and followed by decompression and hydration during exhumation. Rutile exsolution in garnet and quartz exsolution in omphacite and titanite formed through mineral reactions during high P-T peak metamorphism. Isochemical phase diagrams modeled for samples from three different locations indicate that the outer part of the eastern unit preserves a peak metamorphic condition of c. 850-1000 degrees C at 18-25 kbar, whereas the central part has a similar pressure (c. 23 kbar), but a lower temperature (c. 670 degrees C). Due to the limitations in the phase diagram calculations the estimated P-T conditions represent the minimum conditions attained by the peak metamorphic assemblage, and the pre-exsoived peak assemblage probably stabilized at a higher pressure. This observation is strongly supported by the presence of exsolution microstructures. The present results demonstrate that the eastern unit experienced very high P-T conditions during peak metamorphism and a tight clockwise P-T trajectory and provide the first indication of possible ultrahigh-pressure metamorphism in the Glenelg eclogites. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The divergent role of microbes in the field of mineral processing starting from mining and beneficiation to efficient waste disposal has been well recognized now. The roles of various microorganisms and bioreagents in the beneficiation of minerals are illustrated in this paper. Various types of microorganisms useful in bringing about selective flotation and flocculation of various oxide and sulfide minerals are illustrated. Interfacial phenomena governing microbe-mineral interactions are discussed with reference to bacterial cell wall architecture, cell surface hydrophobicity, electrokinetic data, and adsorption behavior on various minerals. Applications of microbially induced mineral beneficiation are demonstrated with respect to beneficiation of iron ores, bauxite, limestone, and complex multimetal sulfides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiobacillus ferrooxidans cells grown on sulfur, pyrite, and chalcopyrite exhibit greater hydrophobicity than ferrous ion-grown cells. The isoelectric points of sulfur-, pyrite-, and chalcopyrite-grown cells were observed to be at a pH higher than that for ferrous ion-grown cells. Microbe-mineral interactions result in change in the surface chemistry of the organism as well as that of the minerals with which it has interacted. Sulfur, pyrite, and chalcopyrite after interaction with T. ferrooxidans exhibited a significant shift in their isoelectric points from the initial values exhibited by uninteracted minerals. With antibodies raised against sulfur-grown T. ferrooxidans, pyrite- and chalcopyrite-grown cells showed immunoreactivity, whereas ferrous ion-grown cells failed to do so. Fourier transform infrared spectroscopy of sulfur-grown cells suggested that a proteinaceous new cell surface appendage synthesized in mineral-grown cells brings about adhesion to the solid mineral substrates. Such an appendage was found to be absent in ferrous ion-grown cells as it is not required during growth in liquid substrates.