10 resultados para microsatellite markers
em Indian Institute of Science - Bangalore - Índia
Resumo:
We report here development and characterization of 48 novel microsatellite markers for Ropalidia marginata, a tropical, primitively eusocial polistine wasp from peninsular India. Thirty-two microsatellites showed polymorphism in a wild population of R. marginata (N = 38) collected from Bangalore, India. These markers will facilitate answering some interesting questions in ecology and evolutionary biology of this wasp, such as population structure, serial polygyny, intra-colony genetic relatedness and the pattern of queen succession.
Resumo:
PURPOSE: To report the linkage analysis of retinitis pigmentosa (RP) in an Indian family. METHODS: Individuals were examined for symptoms of retinitis pigmentosa and their blood samples were withdrawn for genetic analysis. The disorder was tested for linkage to known 14 adRP and 22 arRP loci using microsatellite markers. RESULTS: Seventeen individuals including seven affecteds participated in the study. All affected individuals had typical RP. The age of onset of the disease ranged from 8-18 years. The disorder in this family segregated either as an autosomal recessive trait with pseudodominance or an autosomal dominant trait. Linkage to an autosomal recessive locus RP28 on chromosome 2p14-p15 was positive with a maximum two-point lod score of 3.96 at theta=0 for D2S380. All affected individuals were homozygous for alleles at D2S2320, D2S2397, D2S380, and D2S136. Recombination events placed the minimum critical region (MCR) for the RP28 gene in a 1.06 cM region between D2S2225 and D2S296. CONCLUSIONS : The present data confirmed linkage of arRP to the RP28 locus in a second Indian family. The RP28 locus was previously mapped to a 16 cM region between D2S1337 and D2S286 in a single Indian family. Haplotype analysis in this family has further narrowed the MCR for the RP28 locus to a 1.06 cM region between D2S2225 and D2S296. Of 15 genes reported in the MCR, 14 genes (KIAA0903, OTX1, MDH1, UGP2, VPS54, PELI1, HSPC159, FLJ20080, TRIP-Br2, SLC1A4, KIAA0582, RAB1A, ACTR2, and SPRED2) are either expressed in the eye or retina. Further study needs to be done to test which of these genes is mutated in patients with RP linked to the RP28 locus.
Resumo:
This study examines the population genetic structure of Asian elephants (Elephas maximus) across India, which harbours over half the world's population of this endangered species. Mitochondrial DNA control region sequences and allele frequencies at six nuclear DNA microsatellite markers obtained from the dung of free-ranging elephants reveal low mtDNA and typical microsatellite diversity. Both known divergent clades of mtDNA haplotypes in the Asian elephant are present in India, with southern and central India exhibiting exclusively the β clade of Fernando et al. (2000), northern India exhibiting exclusively the α clade and northeastern India exhibiting both, but predominantly the α clade. A nested clade analysis revealed isolation by distance as the principal mechanism responsible for the observed haplotype distributions within the α and β clades. Analyses of molecular variance and pairwise population FST tests based on both mitochondrial and microsatellite DNA suggest that northern-northeastern India, central India, Nilgiris (in southern India) and Anamalai-Periyar (in southern India) are four demographically autonomous population units and should be managed separately. In addition, evidence for female philopatry, male-mediated gene flow and two possible historical biogeographical barriers is described.
Resumo:
Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.
Resumo:
Indian tasar silkmoth, Antheraea mylitta is an economically important wild silkmoth species distributed across India. A number of morphologically and ethologically well-defined ecotypes are known for this species that differ in their primary food plant specificity. Most of these ecotypes do not interbreed in nature, but are able to produce offspring under captive conditions. Microsatellite markers were developed for A. mylitta, and out of these, ten well-behaved microsatellite loci were used to analyze the population structure of different ecoraces. A total of 154 individual moths belonging to eight different ecoraces, were screened at each locus. Hierarchical analysis of population structure using Analysis of MOlecular VAriance (AMOVA) revealed significant structuring (F-ST = 0.154) and considerable inbreeding (F-IS = 0.505). A significant isolation by distance was also observed. The number of possible population clusters was investigated using distance method, Bayesian algorithm and self organization maps (SOM). The first two methods revealed two distinct clusters, whereas the SOM showed the different ecoraces not to be clearly differentiated. These results suggest that although there is a large degree of phenotypic variation among the different ecoraces of A. mylitta, genetically they are not very different, and the phenotypic differences may largely be a result of their respective ecology.
Resumo:
The DNA polymorphism among 22 isolates of Sclerospora graminicola, the causal agent of downy mildew disease of pearl millet was assessed using 20 inter simple sequence repeats (ISSR) primers. The objective of the study was to examine the effectiveness of using ISSR markers for unravelling the extent and pattern of genetic diversity in 22 S. graminicola isolates collected from different host cultivars in different states of India. The 19 functional ISSR primers generated 410 polymorphic bands and revealed 89% polymorphism and were able to distinguish all the 22 isolates. Polymorphic bands used to construct an unweighted pair group method of averages (UPGMA) dendrogram based on Jaccard's co-efficient of similarity and principal coordinate analysis resulted in the formation of four major clusters of 22 isolates. The standardized Nei genetic distance among the 22 isolates ranged from 0.0050 to 0.0206. The UPGMA clustering using the standardized genetic distance matrix resulted in the identification of four clusters of the 22 isolates with bootstrap values ranging from 15 to 100. The 3D-scale data supported the UPGMA results, which resulted into four clusters amounting to 70% variation among each other. However, comparing the two methods show that sub clustering by dendrogram and multi dimensional scaling plot is slightly different. All the S. graminicola isolates had distinct ISSR genotypes and cluster analysis origin. The results of ISSR fingerprints revealed significant level of genetic diversity among the isolates and that ISSR markers could be a powerful tool for fingerprinting and diversity analysis in fungal pathogens.
Resumo:
Recent molecular studies on langurs of the Indian subcontinent suggest that the widely-distributed and morphologically variable Hanuman langurs (Semnopithecus entellus) are polyphyletic with respect to Nilgiri and urple-faced langurs. To further investigate this scenario, we have analyzed additional sequences of mitochondrial cytochrome b as well as nuclear protamine P1 genes from these species. The results confirm Hanuman langur polyphyly in the mitochondrial tree and the nuclear markers suggest that the Hanuman langurs share protamine P1 alleles with Nilgiri and purple-faced langurs. We recommend provisional splitting of the so-called Hanuman langurs into three species such that the taxonomy is consistent with their evolutionary relationships.
Resumo:
Given the increasing aetiological importance of Streptococcus dysgalactiae subspecies equisimilis in diseases which are primarily attributed to S. pyogenes, molecular markers are essential to distinguish these species and delineate their epidemiology more precisely. Many clinical microbiology laboratories rely on agglutination reactivity and biochemical tests to distinguish them. These methods have limitations which are particularly exacerbated when isolates with mixed properties are encountered. In order to provide additional distinguishing parameters that could be used to unequivocally discriminate these two common pathogens, we assess here three molecular targets: the speB gene, intergenic region upstream of the scpG gene (IRSG) and virPCR. Of these, the former two respectively gave positive and negative results for S. pyogenes, and negative and positive results for S. dysgalactiae subsp. equisimilis. Thus,a concerted use of these nucleic acid-based methods is particularly helpful in epidemiological surveillance to accurately assess the relative contribution of these species to streptococcal infections and diseases.
Resumo:
Mycobacterial spheroplasts were prepared by treatment of the glycinesensitized cells with a combination of lipase and lysozyme. They were stable for several hours at room temperature but were lysed on treatment with 0.1% sodium dodecyl sulfate. The spheroplasts could be regenerated on a suitable medium. Fusion and regeneration of the spheroplasts were attempted using drug resistant mutant strains ofM. smegmalis. Recombinants were obtained from spheroplast fusion mediated by polyethylene glycol and dimethyl sulfoxide. Simultaneous expression of rccombinant properties was observed only after an initial lag in the isolated clones. This has been explained as due to “chromosome inactivation” in the fused product.