2 resultados para metalloproteins

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dinuclear complexes containing a (mu-oxo)bis(mu-carboxylato) diruthenium (III) core have been prepared by a novel synthetic route using metal-metal bonded diruthenium(II,III) tetracarboxylates as precursors. The complexes have been structurally characterized and they are redox active. The terminal ligands play an important role in tuning the electronic structure of the core. The stability of the core is found to be dependent on the size and pi-acidic nature of the terminal ligand cis- to the mu-oxo ligand. The chemistry of such tribridged complexes is relatively new. The rapid growth of this chemistry is based on the discovery of similar core structures in several non-heme iron- and manganese-containing metalloproteins. The tribridged core presents a new structural motif in coordination chemistry. The chemistry of diruthenium complexes with a [Ru-2(mu-O) (mu-O(2)CR)(2)(2+)] core has been reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places) is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and alpha-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures), takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.