555 resultados para metal chelating ability
em Indian Institute of Science - Bangalore - Índia
Resumo:
Synephrinase, an enzyme catalyzing the conversion of (−)-synephrine into p-hydroxyphenylacetaldehyde and methylamine, was purified to apparent homogeneity from the cell-free extracts of Arthrobacter synephrinum grown on (±)-synephrine as the sole source of carbon and nitrogen. A 40-fold purification was sufficient to produce synephrinase that is apparently homogeneous as judged by native polyacrylamide gel electrophoresis and has a specific activity of 1.8 μmol product formed /min/mg protein. Thus, the enzyme is a relatively abundant enzyme, perhaps comprising as much as 2.5% of the total protein. The enzyme essentially required a sulfhydryl compound for its activity. Metal ions like Mg2+, Ca2+, and Mn2+ stimulated the enzyme activity. Metal chelating agents, thiol reagents, denaturing agents, and metal ions like Zn2+, Hg2+, Ag1+, and Cu2+ inhibited synephrinase activity. Apart from (−)-synephrine, the enzyme acted upon (±)-octopamine and β-methoxysynephrine. Molecular oxygen was not utilized during the course of the reaction. The molecular mass of the enzyme as determined by Sephadex G-200 chromatography, was around 156,000. The enzyme was made up of four identical subunits with a molecular mass of 42,000.
Resumo:
Evidence was obtained for the participation of iron in the double hydroxylation reaction catalyzed by anthranilate hydroxylase from Aspergillus niger (UBC 814). Omission of iron from the growth medium gave inactive preparations of anthranilate hydroxylase which could be reactivated by incubating the enzyme preparations with ferric citrate. The enzyme was susceptible to inhibition by metal chelating agents. The Ki for o-phenanthroline, which inhibited the enzyme activity non-competitively with respect to anthranilate, was calculated to be 0.9 mM. The inhibition by o-phenanthroline was counteracted by ferric complexes such as ferric-ethylenediaminetetraacetic acid and ferric citrate. Anthranilate afforded protection against inhibition by o-phenanthroline.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.
Resumo:
An enzyme which catalyzes the oxidative conversion of o-aminophenol to 2-amino-3-H-isophenoxazin-3-one has been purified 396-fold by using standard fractionation procedures. The enzyme is specific for o-aminophenol and has pH and temperature optima at 6.2 and 40 °, respectively. It is insensitive to metal chelating agents but is inhibited by several reducing substances. There is no cofactor or metal ion requirement for the reaction. A competitive type of inhibition was observed with structural analogs such as anthranilic acid and 3-hydroxyanthranilic acid. There are no free sulfhydryl groups in the enzyme, but preincubation of the enzyme with substrate or substrate analogs resulted in the liberation of titratable free sulfhydryl groups. The mechanism of biosynthesis of isophenoxazine ring is discussed.
Resumo:
The terminal step in the oxidation of anthranilic acid to catechol by anthranilic acid oxidase system from Tecoma stans, which converts o-aminophenol to catechol has been studied in detail. The reaction catalyses the conversion of one molecule of o-aminophenol to one molecule each of ammonia and catechol. The partially purified enzyme has a pH optimum of 6·2 in citrate-phosphate buffer and a temperature optimum of 45°. The metal ions, Mg2+, Co2+ and Fe3+ were inhibitory to the reaction. Metal chelating agents like 8-hydroxyquinoline, o-phenanthroline, and diethyldithiocarbamate, caused a high degree of inhibition. A sulfhydryl requirement for the reaction was inferred from the inhibition of the reaction by p-chloromercuribenzoate and its reversal with GSH. Atebrin inhibition was reversed by addition of FAD to the reaction mixture.
Resumo:
Isophenoxazine, formed by the condensation of two molecules of o-aminophenol, is reduced by an enzyme system from Tecoma stans leaves to two molecules of catechol. The reaction proceeds well under anaerobic conditions; a 1–2 mole stoichiometry between the substrate disappeared and the product formed was maintained. The enzyme showed maximum activity at pH 5. The substrate at high concentrations caused a diminution in the activity and the optimum concentration of substrate was at 6 × 10−4 Image . The enzyme preparation was able to convert cinnabarinic acid and diphenylene dioxide 2,3-quinone into the corresponding catechol substances. The diphenylene dioxide 2,3-quinone at the same concentration was three times more susceptible to enzymic cleavage than isophenoxazine. Cinnabarinic acid inhibited the enzymic cleavage of isophenoxazine competitively. None of the known electron donors was found to activate the reaction. Inhibition studies suggested that intact sulfhydryl groups are necessary for enzyme activity. Heavy metal ions like Hg++, Ag+, Co++, Fe++, Ni++, and Fe3++ inhibited the reaction. Metal chelating agents did not have any effect on the enzyme.
Resumo:
An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.
Resumo:
The cr~¢stal structure of [potassium(benzo-15-crown-5)](picrate) shows that in the complex the metal is sandwiched between two crowns andhas no interaction with plcrate.
Resumo:
Microporous polybenzimidazole of 250–500 μm spherical bead size from Celanese has been reacted with epichlorohydrin and sodium hydroxide and the resulting product with pendant epoxy groups has been reacted with various chelating ligands in order to augment the metal sorption capacity and selectivity of the resin. The chelating ligands used include ethylenediamine, diethylenetriamine, diethanolamine, dimethylglyoxime, L-cysteine, thiourea, dithiooxamide, glyoxal-bis-2-hydroxyanil, salicylaldehyde-ethylenediimine, and glyoxal-bis-2-mercaptoanil. The aminolysis of the pendant epoxy groups with the oligoamines has been performed in pyridine under reflux conditions, while the addition reactions with the other ligands which are alkali soluble have been carried out at room temperature in a mixture of dioxane and aqueous KOH using tetra-n-butylammonium iodide as the phase transfer catalyst. The products are found to possess high capacity and selectivity in metal sorption depending on the ligand attached.
Resumo:
In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.
Resumo:
Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.
Resumo:
The Cu(II). Zn(II) and Cd(II) chloride and bromide complexes of N-2(2-pyridyl)thioacetamide and N-(2-pyridyl)thiobenzamide have been prepared. The infrared and 1H and 13C NMR spectra of the complexes and the free ligands have been analysed to determine the coordination sites. It was concluded that N-(2-pyridyl)thioacetamide behaves as a bidentate ligand, chelating to the metal via pyridine nitrogen and thionamide sulfur atoms while the other ligand, N-(2-pyridyl)thiobenzamide coordinates to the metal atom as a unidentate through the pyridine nitrogen atom. Conformations of the free ligands are discussed.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.