11 resultados para mesh: Biological Models
em Indian Institute of Science - Bangalore - Índia
Resumo:
Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.
Resumo:
The NUVIEW software package allows skeletal models of any double helical nucleic acid molecule to be displayed out a graphics monitor and to apply various rotations, translations and scaling transformations interactively, through the keyboard. The skeletal model is generated by connecting any pair of representative points, one from each of the bases in the basepair. In addition to the above mentioned manipulations, the base residues can be identified by using a locator and the distance between any pair of residues can be obtained. A sequence based color coded display allows easy identification of sequence repeats, such as runs of Adenines. The real time interactive manipulation of such skeletal models for large DNA/RNA double helices, can be used to trace the path of the nucleic acid chain in three dimensions and hence get a better idea of its topology, location of linear or curved regions, distances between far off regions in the sequence etc. A physical picture of these features will assist in understanding the relationship between base sequence, structure and biological function in nucleic acids.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]
Resumo:
An attempt is made to present some challenging problems (mainly to the technically minded researchers) in the development of computational models for certain (visual) processes which are executed with, apparently, deceptive ease by the human visual system. However, in the interest of simplicity (and with a nonmathematical audience in mind), the presentation is almost completely devoid of mathematical formalism. Some of the findings in biological vision are presented in order to provoke some approaches to their computational models, The development of ideas is not complete, and the vast literature on biological and computational vision cannot be reviewed here. A related but rather specific aspect of computational vision (namely, detection of edges) has been discussed by Zucker, who brings out some of the difficulties experienced in the classical approaches.Space limitations here preclude any detailed analysis of even the elementary aspects of information processing in biological vision, However, the main purpose of the present paper is to highlight some of the fascinating problems in the frontier area of modelling mathematically the human vision system.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.
Resumo:
Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.
Resumo:
The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNPO4 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity theta and the wavelength lambda of a plane wave; we show that PD leads to a periodic, spatial modulation of theta and a temporally periodic modulation of lambda; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNPO4 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNPO4 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.