27 resultados para merging

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive the lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the merging and splitting of quasi-two-dimensional Bose-Einstein condensates with strong dipolar interactions. We observe that if the dipoles have a non-zero component in the plane of the condensate, the dynamics of merging or splitting along two orthogonal directions, parallel and perpendicular to the projection of dipoles on the plane of the condensate, are different. The anisotropic merging and splitting of the condensate is a manifestation of the anisotropy of the roton-like mode in the dipolar system. The difference in dynamics disappears if the dipoles are oriented at right angles to the plane of the condensate as in this case the Bogoliubov dispersion, despite having roton-like features, is isotropic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure-supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depending on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on an orbit with high angular momentum. Systems with these hybrid properties have recently been observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with these observations and demonstrate that even mergers composed of non rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been made of the differential thermal analysis of (i) potassium perchlorate in powdered form, (ii) potassium perchlorate in pelletized form, (iii) potassium perchlorate recrystallized from liquid NH3, and (iv) potassium perchlorate preheated for 24 hours at 375°. Pretreatment of potassium perchlorate leads to a desensitization of both endothermic and exothermic processes. Additionally, the pretreatment tends to convert the symmetric exotherm into an asymmetric exotherm due to merging of the two exotherms. An analysis of the factors causing asymmetry in the exotherm has thrown fresh light on the mechanism of thermal decomposition of potassium perchlorate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the impact of dissipationless minor galaxy mergers on the angular momentum of the remnant. Our simulations cover a range of initial orbital characteristics, and the system consists of a massive galaxy with a bulge and disk merging with a much less massive (one-tenth or one-twentieth) gasless companion that has a variety of morphologies (disk-or elliptical-like) and central baryonic mass concentrations. During the process of merging, the orbital angular momentum is redistributed into the internal angular momentum of the final system; the internal angular momentum of the primary galaxy can increase or decrease depending on the relative orientation of the orbital spin vectors (direct or retrograde), while the initially nonrotating dark matter halo always gains angular momentum. The specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits, and the ratio of rotation speed to velocity dispersion of the merger remnant is lower than the initial value, not only because of an increase in the dispersion but also of the slowing-down of the disk rotation. We briefly discuss several astrophysical implications of these results, suggesting that minor mergers do not cause a "random walk" process of the angular momentum of the stellar disk component of galaxies, but rather a steady decrease. Minor mergers may play a role in producing the large scatter observed in the Tully-Fisher relation for S0 galaxies, as well as in the increase of the velocity dispersion and the decrease in upsilon/sigma at large radii as observed in S0 galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a novel and simple definition of general colored Petri nets. This definition is coherent with that of (uncolored) Petri nets, preserves the reflexivity of the original net and is extended to represent inhibitors. Also suggested are systematic and formal merging rules to obtain a well-formed structure of the extended colored Petri net by folding a given uncolored net. Finally, we present a technique to compute colored invariants by selecting colored RP-subnets. On the average, the proposed technique performs better than the existing ones. The analysis procedure is explained through an illustrative example of a three-level interrupt-priority-handler scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current scientific research is characterized by increasing specialization, accumulating knowledge at a high speed due to parallel advances in a multitude of sub-disciplines. Recent estimates suggest that human knowledge doubles every two to three years – and with the advances in information and communication technologies, this wide body of scientific knowledge is available to anyone, anywhere, anytime. This may also be referred to as ambient intelligence – an environment characterized by plentiful and available knowledge. The bottleneck in utilizing this knowledge for specific applications is not accessing but assimilating the information and transforming it to suit the needs for a specific application. The increasingly specialized areas of scientific research often have the common goal of converting data into insight allowing the identification of solutions to scientific problems. Due to this common goal, there are strong parallels between different areas of applications that can be exploited and used to cross-fertilize different disciplines. For example, the same fundamental statistical methods are used extensively in speech and language processing, in materials science applications, in visual processing and in biomedicine. Each sub-discipline has found its own specialized methodologies making these statistical methods successful to the given application. The unification of specialized areas is possible because many different problems can share strong analogies, making the theories developed for one problem applicable to other areas of research. It is the goal of this paper to demonstrate the utility of merging two disparate areas of applications to advance scientific research. The merging process requires cross-disciplinary collaboration to allow maximal exploitation of advances in one sub-discipline for that of another. We will demonstrate this general concept with the specific example of merging language technologies and computational biology.