70 resultados para maximum-likelihood estimation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the setting of the pattern maximum likelihood (PML) problem studied by Orlitsky et al. We present a well-motivated heuristic algorithm for deciding the question of when the PML distribution of a given pattern is uniform. The algorithm is based on the concept of a ``uniform threshold''. This is a threshold at which the uniform distribution exhibits an interesting phase transition in the PML problem, going from being a local maximum to being a local minimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an algorithmic technique for accelerating maximum likelihood (ML) algorithm for image reconstruction in fluorescence microscopy. This is made possible by integrating Biggs-Andrews (BA) method with ML approach. The results on widefield, confocal, and super-resolution 4Pi microscopy reveal substantial improvement in the speed of 3D image reconstruction (the number of iterations has reduced by approximately one-half). Moreover, the quality of reconstruction obtained using accelerated ML closely resembles with nonaccelerated ML method. The proposed technique is a step closer to realize real-time reconstruction in 3D fluorescence microscopy. Microsc. Res. Tech. 78:331-335, 2015. (c) 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probable maximum precipitation (PMP) is a theoretical concept that is widely used by hydrologists to arrive at estimates for probable maximum flood (PMF) that find use in planning, design and risk assessment of high-hazard hydrological structures such as flood control dams upstream of populated areas. The PMP represents the greatest depth of precipitation for a given duration that is meteorologically possible for a watershed or an area at a particular time of year, with no allowance made for long-term climatic trends. Various methods are in use for estimation of PMP over a target location corresponding to different durations. Moisture maximization method and Hershfield method are two widely used methods. The former method maximizes the observed storms assuming that the atmospheric moisture would rise up to a very high value estimated based on the maximum daily dew point temperature. On the other hand, the latter method is a statistical method based on a general frequency equation given by Chow. The present study provides one-day PMP estimates and PMP maps for Mahanadi river basin based on the aforementioned methods. There is a need for such estimates and maps, as the river basin is prone to frequent floods. Utility of the constructed PMP maps in computing PMP for various catchments in the river basin is demonstrated. The PMP estimates can eventually be used to arrive at PMF estimates for those catchments. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the paper is to develop a new method to estimate the maximum magnitude (M (max)) considering the regional rupture character. The proposed method has been explained in detail and examined for both intraplate and active regions. Seismotectonic data has been collected for both the regions, and seismic study area (SSA) map was generated for radii of 150, 300, and 500 km. The regional rupture character was established by considering percentage fault rupture (PFR), which is the ratio of subsurface rupture length (RLD) to total fault length (TFL). PFR is used to arrive RLD and is further used for the estimation of maximum magnitude for each seismic source. Maximum magnitude for both the regions was estimated and compared with the existing methods for determining M (max) values. The proposed method gives similar M (max) value irrespective of SSA radius and seismicity. Further seismicity parameters such as magnitude of completeness (M (c) ), ``a'' and ``aEuro parts per thousand b `` parameters and maximum observed magnitude (M (max) (obs) ) were determined for each SSA and used to estimate M (max) by considering all the existing methods. It is observed from the study that existing deterministic and probabilistic M (max) estimation methods are sensitive to SSA radius, M (c) , a and b parameters and M (max) (obs) values. However, M (max) determined from the proposed method is a function of rupture character instead of the seismicity parameters. It was also observed that intraplate region has less PFR when compared to active seismic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noise-predictive maximum likelihood (NPML) is a well known signal detection technique used in partial response maximum likelihood (PRML) scheme in 1D magnetic recording channels. The noise samples colored by the partial response (PR) equalizer are predicted/ whitened during the signal detection using a Viterbi detector. In this paper, we propose an extension of the NPML technique for signal detection in 2D ISI channels. The impact of noise prediction during signal detection is studied in PRML scheme for a particular choice of 2D ISI channel and PR targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Merton's model views equity as a call option on the asset of the firm. Thus the asset is partially observed through the equity. Then using nonlinear filtering an explicit expression for likelihood ratio for underlying parameters in terms of the nonlinear filter is obtained. As the evolution of the filter itself depends on the parameters in question, this does not permit direct maximum likelihood estimation, but does pave the way for the `Expectation-Maximization' method for estimating parameters. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares and analyzes the performance of distributed cophasing techniques for uplink transmission over wireless sensor networks. We focus on a time-division duplexing approach, and exploit the channel reciprocity to reduce the channel feedback requirement. We consider periodic broadcast of known pilot symbols by the fusion center (FC), and maximum likelihood estimation of the channel by the sensor nodes for the subsequent uplink cophasing transmission. We assume carrier and phase synchronization across the participating nodes for analytical tractability. We study binary signaling over frequency-flat fading channels, and quantify the system performance such as the expected gains in the received signal-to-noise ratio (SNR) and the average probability of error at the FC, as a function of the number of sensor nodes and the pilot overhead. Our results show that a modest amount of accumulated pilot SNR is sufficient to realize a large fraction of the maximum possible beamforming gain. We also investigate the performance gains obtained by censoring transmission at the sensors based on the estimated channel state, and the benefits obtained by using maximum ratio transmission (MRT) and truncated channel inversion (TCI) at the sensors in addition to cophasing transmission. Simulation results corroborate the theoretical expressions and show the relative performance benefits offered by the various schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a linear model in each partition. The proposed algorithm is similar in spirit to k-means clustering algorithm. We show that our algorithm can also be viewed as a special case of an EM algorithm for maximum likelihood estimation under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with that of the state of art algorithms on various datasets. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.