50 resultados para matrix solid-phase dispersion

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a simple technique for the fermentation of untreated or partly-treated leafy biomass in a digester of novel design without incurring the normal problems of feeding, floating and scum formation of feed, etc. The solid phase fermentation studied consists of a bed of biomass frequently sprinkled with an aqueous bacterial inoculum and recycling the leachate to conserve moisture and improve the bacterial dispersion in the bed. The decomposition of the leaf biomass and water hyacinth substrates used in this study was rapid, taking 45 and 30 days for the production of 250 and 235 l biogas per kg total solids (TS) respectively, for the above mentioned substrates at a daily sprinkled volume of 26 ml cm−2 of bed per day sprinkled at 12 h intervals. Very little volatile fatty acid (VFA) intermediates accumulated in the liquid sprinkled, suggesting acidogenesis to be rate-limiting in this process. From the pattern of VFA and gas produced it is concluded that most of the biogas produced is from the biomass bed, thus making the operation of a separate methanogenic reactor unnecessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to an investigation of the structural environment around Zn in polycrystalline K2ZnCi4 over the temperature range associated with its solid-to-solid phase transformations at 127 degrees C and 282 degrees C. The results show a reversible increase in thermal disorder and in the tetrahedral distortion of the ZnCl42- anion upon transformation into the incommensurate phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic constants of MAb-hCG interactions have been determined using solid phase binding of I-125[hCG] to immobilized MAb. While association has been shown to follow the expected pattern, dissociation consists of at least two reversible steps, one with a rate constant of 0.0025 min(-1), and a second with a rate constant of 0.00023 min(-1). Validity of affinity constant measurements in the light of the complex reaction kinetics is discussed, A comparison between the method of surface plasmon resonance technology (BIAcore) and solid phase binding (SPB) for determination of kinetic parameters shows that SPB provides not only a cost-effective approach for determination of realtime kinetic parameters of macromolecular ligand-ligate interaction but also a method with several advantages over the BIAcore system in investigating the mechanism of antigen-antibody interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectra of solid formamide are reported as a function of temperature. Solid formamide samples were prepared at 30 K and then annealed to higher temperatures (300 K) with infrared transmission spectra being recorded over the entire temperature range. The NH2 vibrations of the formamide molecule were found to be particularly very sensitive to temperature change. The IR spectra revealed a phase change occurring in solid formamide between 155 and 165 K. Spectral changes observed above and below the phase transition may be attributed to a rearrangement between formamide dimers and the formation of polymers is proposed at higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the events near the fusion interfaces of dissimilar welds using a phase-field model developed for single-phase solidification of binary alloys. The parameters used here correspond to the dissimilar welding of a Ni/Cu couple. The events at the Ni and the Cu interface are very different, which illustrate the importance of the phase diagram through the slope of the liquidus curves. In the Ni side, where the liquidus temperature decreases with increasing alloying, solutal melting of the base metal takes place; the resolidification, with continuously increasing solid composition, is very sluggish until the interface encounters a homogeneous melt composition. The growth difficulty of the base metal increases with increasing initial melt composition, which is equivalent to a steeper slope of the liquidus curve. In the Cu side, the initial conditions result in a deeply undercooled melt and contributions from both constrained and unconstrained modes of growth are observed. The simulations bring out the possibility of nucleation of a concentrated solid phase from the melt, and a secondary melting of the substrate due to the associated recalescence event. The results for the Ni and Cu interfaces can be used to understand more complex dissimilar weld interfaces involving multiphase solidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous phase oxidation of sulphur dioxide at low concentrations catalysed by a PVP-Cu complex in the solid phase and dissolved Cu(II) in the liquid phase is studied in a rotating catalyst basket reactor (RCBR). The equilibrium adsorption of Cu(II) and S(VI) on PVP particles is found to be of the Langmuir-type. The diffusional effects of S(IV) species in PVP-Cu resin are found to be insignificant whereas that of product S(VI) are found to be significant. The intraparticle diffusivity of S(VI) is obtained from independent tracer experiments. In the oxidation reaction HSO3- is the reactive species. Both the S(IV) species in the solution, namely SO2(aq) and HSO3- get adsorbed onto the active PVP-Cu sites of the catalyst, but only HSO3- undergoes oxidation. A kinetic mechanism is proposed based on this feature which shows that SO2(aq) has a deactivating effect on the catalyst. A rate model is developed for the three-phase reaction system incorporating these factors along with the effect of concentration of H2SO4 on the solubility of SO2 in the dilute aqueous solutions of Cu(II). Transient oxidation experiments are conducted at different conditions of concentration of SO2 and O-2 in the gas phase and catalyst concentration, and the rate parameters are estimated from the data. The observed and calculated profiles are in very good agreement. This confirms the deactivating effect of nonreactive SO2(aq) on the heterogeneous catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.