58 resultados para master secret key leakage
em Indian Institute of Science - Bangalore - Índia
Resumo:
A pairwise independent network (PIN) model consists of pairwise secret keys (SKs) distributed among m terminals. The goal is to generate, through public communication among the terminals, a group SK that is information-theoretically secure from an eavesdropper. In this paper, we study the Harary graph PIN model, which has useful fault-tolerant properties. We derive the exact SK capacity for a regular Harary graph PIN model. Lower and upper bounds on the fault-tolerant SK capacity of the Harary graph PIN model are also derived.
Resumo:
Mobile nodes observing correlated data communicate using an insecure bidirectional switch to generate a secret key, which must remain concealed from the switch. We are interested in fault-tolerant secret key rates, i.e., the rates of secret key generated even if a subset of nodes drop out before the completion of the communication protocol. We formulate a new notion of fault-tolerant secret key capacity, and present an upper bound on it. This upper bound is shown to be tight when the random variables corresponding to the observations of nodes are exchangeable. Further, it is shown that one round of interaction achieves the fault-tolerant secret key capacity in this case. The upper bound is also tight for the case of a pairwise independent network model consisting of a complete graph, and can be attained by a noninteractive protocol.
Resumo:
Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, our bound allows us to determine the exact linear communication complexity, i.e., the communication complexity when the communication and SK are restricted to be linear functions of the randomness available at the terminals.
Resumo:
We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.
Resumo:
We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.
Resumo:
In this paper, we propose a novel authentication protocol for MANETs requiring stronger security. The protocol works on a two-tier network architecture with client nodes and authentication server nodes, and supports dynamic membership. We use an external membership granting server (MGS) to provide stronger security with dynamic membership. However, the external MGS in our protocol is semi-online instead of being online, i.e., the MGS cannot initiate a connection with a network node but any network node can communicate with the MGS whenever required. To ensure efficiency, the protocol uses symmetric key cryptography to implement the authentication service. However, to achieve storage scalability, the protocol uses a pseudo random function (PRF) to bind the secret key of a client to its identity using the secret key of its server. In addition, the protocol possesses an efficient server revocation mechanism along with an efficient server re-assignment mechanism, which makes the protocol robust against server node compromise.
Resumo:
In this paper, we address the problem of characterizing the instances of the multiterminal source model of Csiszar and Narayan in which communication from all terminals is needed for establishing a secret key of maximum rate. We give an information-theoretic sufficient condition for identifying such instances. We believe that our sufficient condition is in fact an exact characterization, but we are only able to prove this in the case of the three-terminal source model.
Resumo:
The information-theoretic approach to security entails harnessing the correlated randomness available in nature to establish security. It uses tools from information theory and coding and yields provable security, even against an adversary with unbounded computational power. However, the feasibility of this approach in practice depends on the development of efficiently implementable schemes. In this paper, we review a special class of practical schemes for information-theoretic security that are based on 2-universal hash families. Specific cases of secret key agreement and wiretap coding are considered, and general themes are identified. The scheme presented for wiretap coding is modular and can be implemented easily by including an extra preprocessing layer over the existing transmission codes.
Resumo:
Mxr1p (methanol expression regulator 1) functions as a key regulator of methanol metabolism in the methylotrophic yeast Pichia pastoris. In this study, a recombinant Mxr1p protein containing the N-terminal zinc finger DNA binding domain was overexpressed and purified from E coli cells and its ability to bind to promoter sequences of AOXI encoding alcohol oxidase was examined. In the AOXI promoter, Mxr1p binds at six different regions. Deletions encompassing these regions result in a significant decrease in AOXI promoter activity in vivo. Based on the analysis of AOXI promoter sequences, a consensus sequence for Mxr1p binding consisting of a core 5' CYCC 3' motif was identified. When the core CYCC sequence is mutated to CYCA, CYCT or CYCM (M = 5-methylcytosine), Mxr1p binding is abolished. Though Mxr1p is the homologue of Saccharomyces cerevisiae Adr1p transcription factor, it does not bind to Adr1p binding site of S. cerevisiae alcohol dehydrogenase promoter (ADH2UAS1). However, two point mutations convert ADH2UAS1 into an Mxr1p binding site. The identification of key DNA elements involved in promoter recognition by Mxr1p is an important step in understanding its function as a master regulator of the methanol utilization pathway in P. pastoris.
Resumo:
Protocols for secure archival storage are becoming increasingly important as the use of digital storage for sensitive documents is gaining wider practice. Wong et al.[8] combined verifiable secret sharing with proactive secret sharing without reconstruction and proposed a verifiable secret redistribution protocol for long term storage. However their protocol requires that each of the receivers is honest during redistribution. We proposed[3] an extension to their protocol wherein we relaxed the requirement that all the recipients should be honest to the condition that only a simple majority amongst the recipients need to be honest during the re(distribution) processes. Further, both of these protocols make use of Feldman's approach for achieving integrity during the (redistribution processes. In this paper, we present a revised version of our earlier protocol, and its adaptation to incorporate Pedersen's approach instead of Feldman's thereby achieving information theoretic secrecy while retaining integrity guarantees.
Resumo:
A public key cryptosystem is proposed, which is based on the assumption that finding the square root of an element in a large finite ring is computationally infeasible in the absence of a knowledge of the ring structure. The encryption and decryption operations are very fast, and the data expansion is 1:2.
Resumo:
The dimethoxytetralol gives on Vilsmeier reaction the dihydronaphthaldehyde (yield,92%), which on Grignard reaction with MeMgI affords the title compound (yield,�100%), the reactions constituting a high yield synthesis of this important anthracyclinone intermediate.
Resumo:
The metabolism of phenylalanine by a strain of Aspergillus niger, isolated from the soil by enrichment culture has been studied. Analyses of the culture filtrates and replacement studies with various metabolites have revealed the operation of a degradative pathway involving p-hydroxymandelate as a key intermediate in this organism, p-Hydroxymandelate has been isolated from the cultural filtrates and its identity established by UV, IR and chromatographic techniques. A scheme for the degradation of phenylalanine in this organism has been proposed.
Resumo:
Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of similar to 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand-and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.
Resumo:
In this paper, we propose a new security metric for measuring resilience of a symmetric key distribution scheme in wireless sensor network. A polynomial-based and a novel complete connectivity schemes are proposed and an analytical comparison, in terms of security and connectivity, between the schemes is shown. Motivated by the schemes, we derive general expressions for security and connectivity. A number of conclusions are made using these general expressions.