8 resultados para marine spatial planning
em Indian Institute of Science - Bangalore - Índia
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.
Resumo:
Realizing the importance of aerosol characterization and addressing its spatio-temporal heterogeneities over Bay of Bengal (BoB), campaign mode observations of aerosol parameters were carried out using simultaneous cruise, aircraft and land-based measurements during the Winter Integrated Campaign for Aerosols gases and Radiation Budget (W_ICARB). Under this, airborne measurements of total and hemispheric backscatter coefficients were made over several regions of coastal India and eastern BoB using a three wavelength integrating nephelometer. The measurements include high resolution multi-level (ML) sorties for altitude profiles and bi-level (BL) sorties for spatial gradients within and above the Marine Atmospheric Boundary Layer (MABL) over BoB. The vertical profiles of the scattering coefficients are investigated in light of the information on the vertical structure of the atmospheric stability, which was derived from the collocated GPS (Global Positioning System) aided radiosonde ascents. In general, the altitude profiles revealed that the scattering coefficient remained steady in the convectively well-mixed regions and dropped off above the MABL. This decrease was quite rapid off the Indian mainland, while it was more gradual in the eastern BoB. Investigation on horizontal gradients revealed that the scattering coefficients over northern BoB are 3 to 4 times higher compared to that of central BoB within and above the MABL. A north-south gradient in scattering coefficients is observed over Port Blair in the eastern BoB, with values decreasing from south to north, which is attributed to the similar gradient in the surface wind speed, which can be replicated in the sea salt abundance. The gradients are parameterized using best-fit analytical functions.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.
Resumo:
A theoretical framework to analyse the interaction of planning and governance on the extent of outgrowth and level of services is proposed. An indicator framework for quantifying sprawl is also proposed and the same is operationalised for Bangalore. The indicators comprise spatial metrics (derived from temporal satellite remote sensing data) and other metrics obtained from a house-hold survey. The interaction of different indicators with respect to the core city and the outgrowth is determined by multi-dimensional scaling. The analysis reveals the underlying similarities (and dissimilarities) that relate with the different governance structures that prevail here. The paper concludes outlining the challenges in addressing urban sprawl while ensuring adequate level of services that planning and governance have to ensure towards achieving sustainable urbanisation.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.