69 resultados para mappings of higher order

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the role of the higher-order evanescent modes generated at the area discontinuities in the acoustic attenuation characteristics of an elliptical end-chamber muffler with an end-offset inlet and end-centered outlet. It has been observed that with an increase in length, the muffler undergoes a transition from being acoustically short to acoustically long. Short end chambers and long end chambers are characterized by transverse plane waves and axial plane waves, respectively, in the low-frequency range. The nondimensional frequency limit k(0)(D-1/2) or k(0)R(0) as well as the chamber length to inlet/outlet pipe diameter ratio, i.e., L/d(0), up to which the muffler behaves like a short chamber and the corresponding limit beyond which the muffler is acoustically long are determined. The limits between which neither the transverse plane-wave model nor the conventional axial plane-wave model gives a satisfactory prediction have also been determined, the region being called the intermediate range. The end-correction expression for this muffler configuration in the acoustically long limit has been obtained using 3-D FEA carried on commercial software, covering most of the dimension range used in the design exercise. Development of a method of combining the transverse plane wave model with the axial plane wave model using the impedance Z] matrix is another noteworthy contribution of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The O(m(pi)4/(m(u) + (d))2Q2) and O(alpha(S)2) corrections to the leading term of the perturbative QCD calculation of the pion electromagnetic form factor are examined numerically. Both sets of terms provide significant corrections for values of Q2 between 1 and 15 GeV2/c2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.