23 resultados para lubricant
em Indian Institute of Science - Bangalore - Índia
Resumo:
In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.
Resumo:
Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.
Resumo:
The wedge shape is a fairly common cross-section found in many non-axisymmetric components used in machines, aircraft, ships and automobiles. If such components are forged between two mutually inclined dies the metal displaced by the dies flows into the converging as well as into the diverging channels created by the inclined dies. The extent of each type of flow (convergent/divergent) depends on the die—material interface friction and the included die angle. Given the initial cross-section, the length as well as the exact geometry of the forged cross-section are therefore uniquely determined by these parameters. In this paper a simple stress analysis is used to predict changes in the geometry of a wedge undergoing compression between inclined platens. The flow in directions normal to the cross-section is assumed to be negligible. Experiments carried out using wedge-shaped lead billets show that, knowing the interface friction and as long as the deformation is not too large, the dimensional changes in the wedge can be predicted with reasonable accuracy. The predicted flow behaviour of metal for a wide range of die angles and interface friction is presented: these characteristics can be used by the die designer to choose the die lubricant (only) if the die angle is specified and to choose both of these parameters if there is no restriction on the exact die angle. The present work shows that the length of a wedge undergoing compression is highly sensitive to die—material interface friction. Thus in a situation where the top and bottom dies are inclined to each other, a wedge made of the material to be forged could be put between the dies and then compressed, whereupon the length of the compressed wedge — given the degree of compression — affords an estimate of the die—material interface friction.
Resumo:
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.
Resumo:
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.
Resumo:
Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.
Resumo:
Tribology of small inorganic nanoparticles in suspension in a liquid lubricant is often impaired because these particles agglomerate even when organic dispersants are used. In this paper we use lateral force microscopy to study the deformation mechanism and dissipation under traction of two extreme configurations (1) a large MoS2 particle (similar to 20 mu m width) of about 1 mu m height and (2) an agglomerate (similar to 20 mu m width), constituting 50 nm MoS2 crystallites, of about 1 mu m height. The agglomerate records a friction coefficient which is about 5-7 times that of monolithic particle. The paper examines the mechanisms of material removal for both the particles using continuum modeling and microscopy and infers that while the agglomerate response to traction can be accounted for by the bulk mechanical properties of the material, intralayer and interlayer basal planar slips determine the friction and wear of monolithic particles. The results provide a rationale for selection of layered particles, for suspension in liquid lubricants.
Resumo:
The article peruses the frictional response of an important metal working lubricant additive, sodium oleate. Frictional force microscopy is used to track the response of molecules self-assembled on a steel substrate of 3–4 nm roughness at 0% relative humidity. The friction-normal load characteristic emerges as bell-shaped, where the peak friction and normal load at peak friction are both sensitive to substrate roughness. The frictional response at loads lower than that associated with the peak friction is path reversible while at higher loads the loading and unloading paths are different. We suggest that a new low-friction interface material is created when the normal loads are high.
Resumo:
Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In the present investigation, unidirectional grinding marks were attained on the steel plates. Then aluminium (Al) pins were slid at 0.2°, 0.6°, 1.0°, 1.4°, 1.8°, 2.2° and 2.6° tilt angles of the plate with the grinding marks perpendicular and parallel to the sliding direction under both dry and lubricated conditions using a pin-on-plate inclined sliding tester to understand the influence of tilt angle and grinding marks direction of the plate on coefficient of friction and transfer layer formation. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the grinding marks direction of the harder mating surface. Stick-slip phenomenon was observed only under lubricated conditions. For the case of pins slid perpendicular to the unidirectional grinding marks stick-slip phenomenon was observed for tilt angles exceeding 0.6°, the amplitude of which increases with increasing tilt angles. However, for the case of the pins slid parallel to the unidirectional grinding marks the stick-slip phenomena was observed for angles exceeding 2.2°, the amplitude of which also increases with increasing tilt angle. The presence of stick-slip phenomena under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities.
Resumo:
Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes, intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles The medium and agglomeration were found to dictate the deformation mode Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension.Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology. (C) 2010 Elsevier B V All rights reserved.
Resumo:
Friction force generated in lubricated cutting of steel is experimentally estimated by recording the tangential force experienced by the spherical face of a pin rubbing against a freshly cut surface. The pin and the cutting tool are both submerged in the lubricant and the pin is situated on the cut-track to record the force. The recording shows an instantaneous achievement of a peak in the force curve followed by a decline in time to a steady state value. The peak and not the steady state friction was found to be sensitive to the structure of the hydrocarbon and addition of additive to the oil. The configuration was designed and tested to demonstrate the influence of a reaction film which develops during cutting, on cutting tool friction. Given the strong correlation between the peak friction and the existence of a tribofilm in the cutting zone, the configuration is used to determine the lower limit of a cutting speed regime, which marks the initiation of lubricant starvation, in cutting of steel using an emulsion as a cutting fluid. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present the results of molecular-dynamics simulations of systems of dumbbell molecules confined by parallel molecular walls. We have carried out systematic studies of three cases: freezing, steady flows, and stick-slip friction. We find that the molecular orientational degrees of freedom cause the surface layers to deviate from a planar configuration. Nevertheless, steady flows, in a channel as narrow as 15 molecular sizes, display continuum behavior. A range of mechanisms in the dynamics of the freezing of a confined fluid is found, as a function of the wall-fluid interactions and the bond length of the dumbbell molecules. The simple order-disorder transition associated with stick-slip motion in the presence of a layer of monoatomic lubricant molecules is supplanted by more complex behavior due to rotational degrees of freedom of the diatomic molecules.