47 resultados para low carbon future

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

India's energy challenges are three pronged: presence of majority energy poor lacking access to modern energy; need for expanding energy system to bridge this access gap as well as to meet the requirements of fast-growing economy; and the desire to partner with global economies in mitigating the threat of climate change. The presence of 364 million people without access to electricity and 726 million relying on biomass for cooking out of a total rural population of 809 million indicate the seriousness of challenge. In this paper, we discuss an innovative approach to address this challenge, which intends to take advantage of recent global developments and untapped capabilities possessed by India. Intention is to use climate change mitigation imperative as a stimulus and adopt a public-private-partnership-driven ‘business model' with innovative institutional, regulatory, financing, and delivery mechanisms. Some of the innovations are: creation of rural energy access authorities within the government system as leadership institutions; establishment of energy access funds to enable transitions from the regime of "investment/fuel subsidies" to "incentive-linked" delivery of energy services; integration of business principles to facilitate affordable and equitable energy sales and carbon trade; and treatment of entrepreneurs as implementation targets. This proposal targets 100% access to modern energy carriers by 2030 through a judicious mix of conventional and biomass energy systems with an investment of US$35 billion over 20 years. The estimated annual cost of universal energy access is about US$9 billion for a GHG mitigation potential of 213Tg CO2e at an abatement cost of US$41/tCO2e. It is a win-win situation for all stakeholders. Households benefit from modern energy carriers at affordable cost; entrepreneurs run profitable energy enterprises; carbon markets have access to CERs; the government has the satisfaction of securing energy access to rural people; and globally, there is a benefit of climate change mitigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Density reduction of automotive steels is needed to reduce fuel consumption, thereby reducing greenhouse gas emissions. Aluminum addition has been found to be effective in making steels lighter. Such an addition does not change the crystal structure of the material. Steels modified with aluminum possess higher strength with very little compromise in ductility. In this work, different compositions of Fe-Al systems have been studied so that the desired properties of the material remain within the limit. A density reduction of approximately 10% has been achieved. The specific strength of optimal Fe-Al alloys is higher than conventional steels such as ultra-low-carbon steels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m(3) and 0.36 MJ/m(3) for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m(3) for cement content in the rage of 6-8%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European accounts from the 17th century onwards have referred to the repute and manufacture of “wootz’, a traditional crucible steel made especially in parts of southern India in the former provinces of Golconda, Mysore and Salem. Pliny's Natural History mentions the import of iron and steel from the Seres which have been thought to refer to the ancient southern Indian kingdom of the Cheras. As yet the scale of excavations and surface surveys is too limited to link the literary accounts to archaeometallurgical evidence, although pioneering exploratory investigations have been made by scholars, especially on the pre-industrial production sites of Konasamudram and Gatihosahalli discussed in 18th-19th century European accounts. In 1991–2 during preliminary surveys of ancient base metal mining sites, Srinivasan came across unreported dumps with crucible fragments at Mel-Siruvalur in Tamil Nadu, and Tintini and Machnur in Karnataka and she collected surface specimens from these sites as well as from the known site of Gatihosahalli. She was also given crucible fragments by the Tamil University, Tanjavur, from an excavated megalithic site at Kodumanal, dated to ca 2nd c. Bc, mentioned in Tamil Sangam literature (ca 3rd c. BC-3rd c. AD), and very near Karur, the ancient capital of the Sangam Cheras. Analyses of crucible fragments from the surface collection at Mel-Siruvalur showed several iron prills with a uniform pearlitic structure of high-carbon hypereutectoid steel (∼1–1.5% C) suggesting that the end product was uniformly a high-carbon steel of a structure consistent with those of high-carbon steels used successfully to experimentally replicate the watered steel patterns on ‘Damascus’ swords. Investigations indicate that the process was of carburisation of molten low carbon iron (m.p. 1400° C) in crucibles packed with carbonaceous matter. The fabric of crucibles from all the above mentioned sites appears similar. Preliminary investigations on these crucibles are thus reported to establish their relationship to crucible production of carbon steel and to thereby extend the known horizons of this technology further.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All refractories show enhanced corrosion near the slag/metal interface due to Marangoni and convective flows. However, in the case of oxide refractories containing graphite flakes, corrosion is severe due to periodic oscillations in the contact angle at the slag/metal interface, resulting in cyclic dissolution of oxide and graphite into the slag and metal, respectively. Alumina--graphite (AG) refractories should be used only where they are not in simultaneous contact with slag (flux) and low carbon steel.