44 resultados para levers of control
em Indian Institute of Science - Bangalore - Índia
Resumo:
VHF nighttime scintillations, recorded during a high solar activity period at a meridian chain of stations covering a magnetic latitude belt of 3°–21°N (420 km subionospheric points) are analyzed to investigate the influence of equatorial spread F irregularities on the occurrence of scintillation at latitudes away from the equator. Observations show that saturated amplitude scintillations start abruptly about one and a half hours after ground sunset and their onset is almost simultaneous at stations whose subionospheric points are within 12°N latitude of the magnetic equator, but is delayed at a station whose subionospheric point is at 21°N magnetic latitude by 15 min to 4 hours. In addition, the occurrence of postsunset scintillations at all the stations is found to be conditional on their prior occurrence at the equatorial station. If no postsunset scintillation activity is seen at the equatorial station, no scintillations are seen at other stations also. The occurrence of scintillations is explained as caused by rising plasma bubbles and associated irregularities over the magnetic equator and the subsequent mapping of these irregularities down the magnetic field lines to the F region of higher latitudes through some instantaneous mechanism; and hence an equatorial control is established on the generation of postsunset scintillation-producing irregularities in the entire low-latitude belt.
Resumo:
The problem of determining a minimal number of control inputs for converting a programmable logic array (PLA) with undetectable faults to crosspoint-irredundant PLA for testing has been formulated as a nonstandard set covering problem. By representing subsets of sets as cubes, this problem has been reformulated as familiar problems. It is noted that this result has significance because a crosspoint-irredundant PLA can be converted to a completely testable PLA in a straightforward fashion, thus achieving very good fault coverage and easy testability.
Resumo:
This correspondence presents an algorithm for microprogram control memory width minimization with the bit steering technique. The necessary and sufficient conditions to detect the steerability of two mutually exclusive sets of microcommands are established. The algorithm encodes the microcommands of the sets with a bit steering common part and also extends the theory to multiple (more than two) sets of microcommands.
Resumo:
To find the approximate stability limit on the forward gain in control systems with small time delay, this note suggests approximating the exponential in the characteristic equation by the first few terms of its series and using the Routh–Hurwitz criterion. This approximation avoids all the time-consuming graphical work and gives a somewhat pessimistic maximum bound for the gain constant.
Resumo:
Flexray is a high speed communication protocol designed for distributive control in automotive control applications. Control performance not only depends on the control algorithm but also on the scheduling constraints in communication. A balance between the control performance and communication constraints must required for the choice of the sampling rates of the control loops in a node. In this paper, an optimum sampling period of control loops to minimize the cost function, satisfying the scheduling constraints is obtained. An algorithm to obtain the delay in service of each task in a node of the control loop in the hyper period has been also developed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.
Resumo:
An approach is presented for hierarchical control of an ammonia reactor, which is a key unit process in a nitrogen fertilizer complex. The aim of the control system is to ensure safe operation of the reactor around the optimal operating point in the face of process variable disturbances and parameter variations. The four different layers perform the functions of regulation, optimization, adaptation, and self-organization. The simulation for this proposed application is conducted on an AD511 hybrid computer in which the AD5 analog processor is used to represent the process and the PDP-11/ 35 digital computer is used for the implementation of control laws. Simulation results relating to the different layers have been presented.
Resumo:
An important question which has to be answered in evaluting the suitability of a microcomputer for a control application is the time it would take to execute the specified control algorithm. In this paper, we present a method of obtaining closed-form formulas to estimate this time. These formulas are applicable to control algorithms in which arithmetic operations and matrix manipulations dominate. The method does not require writing detailed programs for implementing the control algorithm. Using this method, the execution times of a variety of control algorithms on a range of 16-bit mini- and recently announced microcomputers are calculated. The formulas have been verified independently by an analysis program, which computes the execution time bounds of control algorithms coded in Pascal when they are run on a specified micro- or minicomputer.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
Ramakrishnan A, Chokhandre S, Murthy A. Voluntary control of multisaccade gaze shifts during movement preparation and execution. J Neurophysiol 103: 2400-2416, 2010. First published February 17, 2010; doi: 10.1152/jn.00843.2009. Although the nature of gaze control regulating single saccades is relatively well documented, how such control is implemented to regulate multisaccade gaze shifts is not known. We used highly eccentric targets to elicit multisaccade gaze shifts and tested the ability of subjects to control the saccade sequence by presenting a second target on random trials. Their response allowed us to test the nature of control at many levels: before, during, and between saccades. Although the saccade sequence could be inhibited before it began, we observed clear signs of truncation of the first saccade, which confirmed that it could be inhibited in midflight as well. Using a race model that explains the control of single saccades, we estimated that it took about 100 ms to inhibit a planned saccade but took about 150 ms to inhibit a saccade during its execution. Although the time taken to inhibit was different, the high subject-wise correlation suggests a unitary inhibitory control acting at different levels in the oculomotor system. We also frequently observed responses that consisted of hypometric initial saccades, followed by secondary saccades to the initial target. Given the estimates of the inhibitory process provided by the model that also took into account the variances of the processes as well, the secondary saccades (average latency similar to 215 ms) should have been inhibited. Failure to inhibit the secondary saccade suggests that the intersaccadic interval in a multisaccade response is a ballistic stage. Collectively, these data indicate that the oculomotor system can control a response until a very late stage in its execution. However, if the response consists of multiple movements then the preparation of the second movement becomes refractory to new visual input, either because it is part of a preprogrammed sequence or as a consequence of being a corrective response to a motor error.
Resumo:
The inverse relationship that exists between thyroxine and the vitamin A level of plasma has been examined in chicken. Thyroxine treatment leads to a decrease in the level of vitamin A carrier proteins, retinol-binding protein and prealbumin-2 in plasma and liver. There is an accumulation of vitamin A in the liver, with a greater proportion of vitamin A alcohol being present compared to that of control birds. In thyroxine treatment there is enhanced plasma turnover of retinol-binding protein and prealbumin-2, while their rates of synthesis are marginally increased. Amino acid supplementation partially counteracts effects of thyroxine treatment. Amino acid supplementation of thyroxine-treated birds does not alter the plasma turnover rates of retinol-binding protein and prealbumin-2 but increases substentially their rates of synthesis. The release of vitamin A into circulation is interfered with in hyperthyroidism due to inadequate availability of retinol-binding protein being caused by enhanced plasma turnover rate not compensated for by synthesis.
Resumo:
Our main result is a new sequential method for the design of decentralized control systems. Controller synthesis is conducted on a loop-by-loop basis, and at each step the designer obtains an explicit characterization of the class C of all compensators for the loop being closed that results in closed-loop system poles being in a specified closed region D of the s-plane, instead of merely stabilizing the closed-loop system. Since one of the primary goals of control system design is to satisfy basic performance requirements that are often directly related to closed-loop pole location (bandwidth, percentage overshoot, rise time, settling time), this approach immediately allows the designer to focus on other concerns such as robustness and sensitivity. By considering only compensators from class C and seeking the optimum member of that set with respect to sensitivity or robustness, the designer has a clearly-defined limited optimization problem to solve without concern for loss of performance. A solution to the decentralized tracking problem is also provided. This design approach has the attractive features of expandability, the use of only 'local models' for controller synthesis, and fault tolerance with respect to certain types of failure.
Resumo:
Reduction of switching surge over voltages allows an economic design of UHV transmission system with reduced insulation. The various means of switching surge over voltage control with pre-insertion resistors/closing resistors, shunt re-actors and controlled switching are illustrated. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. An Electromagnetic transients program has been developed for studying the effect of various means of control of switching transients during 765kV UHV transmission line energization. This paper presents the studies carried out on switching surges control in 765kV UHV transmission line energization.
Resumo:
The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the validity of'single fault assumption in deriving diagnostic test sets is examined with respect to crosspoint faults in programmable logic arrays (PLA's). The control input procedure developed here can be used to convert PLA's having undetectable crosspoint faults to crosspoint-irredundant PLA's for testing purposes. All crosspoints will be testable in crosspoint-irredundant PLA's. The control inputs are used as extra variables during testing. They are maintained at logic I during normal operation. A useful heuristic for obtaining a near-minimal number of control inputs is suggested. Expressions for calculating bounds on the number of control inputs have also been obtained.