327 resultados para level scheme
em Indian Institute of Science - Bangalore - Índia
Resumo:
A simplified energy‐level scheme is proposed for the photochemical cycle of the bacteriorhodopsin molecule. Rate equations are solved for the detailed light‐induced processes based on this model and the intensity‐induced population densities in various states of the molecule at steady state are computed which are used to obtain an analytic expression for the absorption coefficient of the modulation beam. Modulation of the probe laser‐beam transmission by the modulation‐laser‐beam intensity‐induced population changes is analyzed. It is predicted that for a probe beam at 412 nm up to 82% modulation can be achieved using a laser beam intensity of 3.2 W/cm2 at 570 nm. For temperatures ∼77 K, the transmission at 610 nm can be switched from zero to 81% for modulating laser intensity of 11 W/cm2. Construction of a spatial light modulator based on bacteriorhodopsin molecules is proposed and some of its features are discussed.
Resumo:
Neutron time-of-flight spectroscopy has been employed to study the crystal-field interaction in the pyrochlore titanate Ho2Ti2O7. The crystal-field parameters and corresponding energy-level scheme have been determined from a profile fit to the observed neutron spectra. The ground state is a well separated Eg doublet with a strong Ising-like anisotropy, which can give rise to frustration in the pyrochlore lattice. Using the crystal-field parameters determined for the Ho compound as an estimate of the crystal-field potential in other pyrochlore magnets, we also find the Ising type behavior for Dy. In contrast, the almost planar anisotropy found for Er and Yb prevents frustration, because of the continuous range of possible spin orientations in this case.
Resumo:
This paper presents a five-level inverter scheme with four two-level inverters for a four-pole induction motor (IM) drive. In a conventional three-phase four-pole IM, there exists two identical voltage-profile winding coil groups per phase around the armature, which are connected in series and spatially apart by two pole pitches. In this paper, these two identical voltage-profile pole-pair winding coils in each phase of the IM are disconnected and fed from four two-level inverters from four sides of the windings with one-fourth dc-link voltage as compared to a conventional five-level neutral-point-clamped inverter. The scheme presented in this paper does not require any special design modification for the induction machine. For this paper, a four-pole IM drive is used, and the scheme can be easily extended to IMs with more than four poles. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
Higher level of inversion is achieved with a less number of switches in the proposed scheme. The scheme proposes a five-level inverter for an open-end winding induction motor which uses only two DC-link rectifiers of voltage rating of Vdc/4, a neutral-point clamped (NPC) three-level inverter and a two-level inverter. Even though the two-level inverter is connected to the high-voltage side, it is always in square-wave operation. Since the two-level inverter is not switching in a pulse width modulated fashion and the magnitude of switching transient is only half compared to the convention three-level NPC inverter, the switching losses and electromagnetic interference is not so high. The scheme is experimentally verified on a 2.5 kW induction machine.
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
Frequency-domain scheduling and rate adaptation enable next generation wireless cellular systems such as Long Term Evolution (LTE) to achieve significantly higher downlink throughput. LTE assigns subcarriers in chunks, called physical resource blocks (PRBs), to users to reduce control signaling overhead. To reduce the enormous feedback overhead, the channel quality indicator (CQI) report that is used to feed back channel state information is averaged over a subband, which, in turn, is a group of multiple PRBs. In this paper, we develop closed-form expressions for the throughput achieved by the subband-level CQI feedback mechanism of LTE. We show that the coarse frequency resolution of the CQI incurs a significant loss in throughput and limits the multi-user gains achievable by the system. We then show that the performance can be improved by means of an offset mechanism that effectively makes the users more conservative in reporting their CQI.
Resumo:
The DC capacitor is an important component in a voltage source inverter.The RMS current flowing through the capacitor determines the capacitor size and losses. The losses, in turn, influence the capacitor life. This paper proposes a space vector based modulation strategy for reducing the capacitor RMS current in a three-level diode-clamped inverter. An analytical closed-form expression is derived for the DC capacitor RMS current with the proposed PWM strategy. The analytical expression is validated through simulations and also experimentally. Theoretical and experimental results are presented, comparing the proposed strategy with conventional space vector PWM (CSVPWM). It is shown that the proposed strategy reduces the capacitor RMS current significantly at high modulation indices and high power factors. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a 5th and 7th harmonic suppression technique for a 2-level VSI fed IM drive, by using capacitive filtering is proposed. A capacitor fed 2-level inverter is used on an open-end winding induction motor to suppress all 5th and 7th order harmonics. A PWM scheme that maintains the capacitor voltage, while suppressing the harmonics is also proposed. The proposed scheme is valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter.
Resumo:
A switched DC voltage three level NPC is proposed in this paper to eliminate capacitor balancing problems in conventional three-level Neutral Point Clamped (NPC) inverter. The proposed configuration requires only one DC link with a voltage V-dc/2, where V-dc is the DC link voltage in a onventional NPC inverter. To get rated DC link voltage (V-dc), the voltage source is alternately onnected in parallel to one of the two series capacitors using two switches and two diodes with device voltage rating of V-dc/2. The frequency at which the voltage source is switched is independent and will not affect the operation of NPC inverter. The switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two level inverter in lower modulation range, thereby increases the reliability of the drive system. A space vector based PWM scheme is used to verify this proposed topology.
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.
Resumo:
A switched rectifier DC voltage source three-level neutral-point-clamped (NPC) converter topology is proposed here to alleviate the inverter from capacitor voltage balancing in three-level drive systems. The proposed configuration requires only one DC link with a voltage of half of that needed in a conventional NPC inverter. To obtain a rated DC link voltage, the rectifier DC source is alternately connected in parallel to one of the two series capacitors using two switches and two diodes with device voltage ratings of half the total DC bus voltage. The frequency at which the voltage source is switched is independent of the inverter and will not affect its operation since the switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two-level inverter in the lower modulation index range, thereby increasing the reliability of the drivesystem. A space-vector-based PWM scheme is used to verify this proposed topology on a laboratory system.
Resumo:
This paper presents an SIMD machine which has been tuned to execute low-level vision algorithms employing the relaxation labeling paradigm. Novel features of the design include: 1. (1) a communication scheme capable of window accessing under a single instruction. 2. (2) flexible I/O instructions to load overlapped data segments; and 3. (3) data-conditional instructions which can be nested to an arbitrary degree. A time analysis of the stereo correspondence problem, as implemented on a simulated version of the machine using the probabilistic relaxation technique, shows a speed up of almost N2 for an N × N array of PEs.
Resumo:
This paper proposes a new five-level inverter topology for open-end winding induction motor (IM) drive. The popular existing circuit configurations for five-level inverter include the NPC inverter and flying capacitor topologies. Compared to the NPC inverter, the proposed topology eliminates eighteen clamping diodes having different voltage ratings in the present circuit. Moreover it requires only one capacitor bank per phase, whereas flying capacitor schemes for five level topologies require six capacitor banks per phase. The proposed topology is realized by feeding the phase winding of an open-end induction motor with two-level inverters in series with flying capacitors. The flying capacitor voltages are balanced using the switching state redundancy for full modulation range. The proposed inverter scheme is capable of producing two-level to five-level pulse width modulated voltage across the phase winding depending on the modulation range. Additionally, in case of any switch failure in the flying capacitor connection, the proposed inverter topology can be operated as a three-level inverter for full modulation range. The proposed scheme is experimentally verified on a four pole, 5hp induction motor drive.
Resumo:
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.