3 resultados para last glacial maximum

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon isotope ratios of peats dated (by C-14) back to 40 kyr BP from the montane region (> 1800 m asl) of the Nilgiris, southern India, reflect changes in the relative proportions of C3 and C4 plant types, which are influenced by soil moisture (and hence monsoonal precipitation), From prior to 40 kyr BP until 28 kyr BP, a general decline in delta(13)C values from about - 14 per mil to - 19 per mil suggests increased dominance of C3 plants concurrent with increasingly moist conditions, During 28-18 kyr BP there seems relatively little change with delta(13) C of - 19 to - 18 per mil, At about 16 kyr BP a sharp reversal in delta(13)C to a peak of - 14.7 per mil indicates a clear predominance of C4 vegetation associated with arid conditions, possibly during or just after the Last Glacial Maximum, A moist phase at about 9 kyr BP (the Holocene Optimum) with dominance of C3 vegetation type is observed, while arid conditions are re-established during 5-2 kyr BP with an overall dominance of C4 vegetation, New data do not support the occurrence of a moist phase coinciding with the Mediaeval Warm Period (at 0.6 kyr BP) as suggested earlier, Overall, the climate and vegetation in the high altitude regions of the southern Indian tropics seem to have responded to past global climatic changes, and this is consistent with other evidences from India and other tropical regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STABLE-ISOTOPE ratios of carbon in soils or lake sediments1-3 and of oxygen and hydrogen in peats4,5 have been found to reflect past moisture variations and hence to provide valuable palaeoclimate records. Previous applications of the technique to peat have been restricted to temperate regions, largely because tropical climate variations are less pronounced, making them harder to resolve. Here we present a deltaC-13 record spanning the past 20 kyr from peats in the Nilgiri hills, southern India. Because the site is at high altitude (>2,000 m above sea level), it is possible to resolve a clear climate signal. We observe the key climate shifts that are already known to have occurred during the last glacial maximum (18 kyr ago) and the subsequent deglaciation. In addition, we observe an arid phase from 6 to 3.5 kyr ago, and a short, wet phase about 600 years ago. The latter appears to correspond to the Mediaeval Warm Period, which previously was believed to be confined to Europe and North America6,7. Our results therefore suggest that this event may have extended over the entire Northern Hemisphere.