8 resultados para landslide
em Indian Institute of Science - Bangalore - Índia
Resumo:
Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.
Resumo:
Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.
Resumo:
Genetic Algorithm for Rule-set Prediction (GARP) and Support Vector Machine (SVM) with free and open source software (FOSS) - Open Modeller were used to model the probable landslide occurrence points. Environmental layers such as aspect, digital elevation, flow accumulation, flow direction, slope, land cover, compound topographic index and precipitation have been used in modeling. Simulated output of these techniques is validated with the actual landslide occurrence points, which showed 92% (GARP) and 96% (SVM) accuracy considering precipitation in the wettest month and 91% and 94% accuracy considering precipitation in the wettest quarter of the year.
Resumo:
Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.
Resumo:
This paper presents a macro-level seismic landslide hazard assessment for the entire state of Sikkim, India, based on the Newmark's methodology. The slope map of Sikkim was derived from ASTER Global Digital Elevation Model (GDEM). Seismic shaking in terms of peak horizontal acceleration (PHA) at bedrock level was estimated from deterministic seismic hazard analysis (DSHA), considering point source model. Peak horizontal acceleration at the surface level for the study area was estimated based on nonlinear site amplification technique, considering B-type NEHRP site class. The PHA at surface was considered to induce driving forces on slopes, thus causing landslides. Knowing the surface level PHA and slope angle, the seismic landslide hazard assessment for each grid point was carried out using Newmark's analysis. The critical static factor of safety required to resist landslide for the PHA (obtained from deterministic analysis) was evaluated and its spatial variation throughout the study area is presented. For any slope in the study area, if the in-situ (available) static factor of safety is greater than the static factor of safety required to resist landslide as predicted in the present study, that slope is considered to be safe.
Resumo:
Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.
Resumo:
An automated geo-hazard warning system is the need of the hour. It is integration of automation in hazard evaluation and warning communication. The primary objective of this paper is to explain a geo-hazard warning system based on Internet-resident concept and available cellular mobile infrastructure that makes use of geo-spatial data. The functionality of the system is modular in architecture having input, understanding, expert, output and warning modules. Thus, the system provides flexibility in integration between different types of hazard evaluation and communication systems leading to a generalized hazard warning system. The developed system has been validated for landslide hazard in Indian conditions. It has been realized through utilization of landslide causative factors, rainfall forecast from NASA's TRMM (Tropical Rainfall Measuring Mission) and knowledge base of landslide hazard intensity map and invokes the warning as warranted. The system evaluated hazard commensurate with expert evaluation within 5-6 % variability, and the warning message permeability has been found to be virtually instantaneous, with a maximum time lag recorded as 50 s, minimum of 10 s. So it could be concluded that a novel and stand-alone system for dynamic hazard warning has been developed and implemented. Such a handy system could be very useful in a densely populated country where people are unaware of the impending hazard.
Resumo:
We define two general classes of nonabelian sandpile models on directed trees (or arborescences), as models of nonequilibrium statistical physics. Unlike usual applications of the well-known abelian sandpile model, these models have the property that sand grains can enter only through specified reservoirs. In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.