32 resultados para international construction joint venture
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
In this paper we have proposed and implemented a joint Medium Access Control (MAC) -cum- Routing scheme for environment data gathering sensor networks. The design principle uses node 'battery lifetime' maximization to be traded against a network that is capable of tolerating: A known percentage of combined packet losses due to packet collisions, network synchronization mismatch and channel impairments Significant end-to-end delay of an order of few seconds We have achieved this with a loosely synchronized network of sensor nodes that implement Slotted-Aloha MAC state machine together with route information. The scheme has given encouraging results in terms of energy savings compared to other popular implementations. The overall packet loss is about 12%. The battery life time increase compared to B-MAC varies from a minimum of 30% to about 90% depending on the duty cycle.
Resumo:
We consider the problem of transmission of several discrete sources over a multiple access channel (MAC) with side information at the sources and the decoder. Source-channel separation does not hold for this channel. Sufficient conditions are provided for transmission of sources with a given distortion. The channel could have continuous alphabets (Gaussian MAC is a special case). Various previous results are obtained as special cases.
Resumo:
This paper describes the design and erection of a climate-responsive Building Integrated Photovoltaic (BIPV) structure in Bangalore, (12.58 N, 77.38 E) in the state of Karnataka, India. Building Integrated Photovoltaics integrate solar panels as part of a building structure (roofs and walls) with an aim to achieve self-sufficiency in the operation and occupant-comfort energy requirements. A joint collaboration between the Centre for Sustainable Technologies, Indian Institute of Science (IISc) and Bharat Heavy Electricals Limited (BHEL) is setting up a 70,000 US$ facility for research in BIPV structures. The structure utilizes low energy building materials like Stabilized Mud Blocks (SMB) integrated with a PV roof. Numerous challenges were overcome in the design of the BIPV roof including mechanisms for natural thermal comfort in response to Bangalore's climatic conditions. The paper presents the challenges overcome in the design and construction of a low energy, climate-responsive BIPV structure.
Resumo:
The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.
Resumo:
Two dimensional Optical Orthogonal Codes (OOCs) named Wavelength/Time Multiple-Pulses-per-Row (W/T MPR) codes suitable for use in incoherent fiber-optic code division multiple access (FO-CDMA) networks are reported in [6]. In this paper, we report the construction of W/T MPR codes, using Greedy Algorithm (GA), with distinct 1-D OOCs [1] as the row vectors. We present the W/T MPR codes obtained using the GA. Further, we verify the correlation properties of the generated W/T MPR codes using Matlab.
Resumo:
Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate Processor performance to micro-architecture parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaike's information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.
Resumo:
Space-time block codes based on orthogonal designs are used for wireless communications with multiple transmit antennas which can achieve full transmit diversity and have low decoding complexity. However, the rate of the square real/complex orthogonal designs tends to zero with increase in number of antennas, while it is possible to have a rate-1 real orthogonal design (ROD) for any number of antennas.In case of complex orthogonal designs (CODs), rate-1 codes exist only for 1 and 2 antennas. In general, For a transmit antennas, the maximal rate of a COD is 1/2 + l/n or 1/2 + 1/n+1 for n even or odd respectively. In this paper, we present a simple construction for maximal-rate CODs for any number of antennas from square CODs which resembles the construction of rate-1 RODs from square RODs. These designs are shown to be amenable for construction of a class of generalized CODs (called Coordinate-Interleaved Scaled CODs) with low peak-to-average power ratio (PAPR) having the same parameters as the maximal-rate codes. Simulation results indicate that these codes perform better than the existing maximal rate codes under peak power constraint while performing the same under average power constraint.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
A strategy for the modular construction of synthetic protein mimics based on the ability non-protein amino acids to act as stereochemical directors of polypeptide chain folding, is described. The use of alpha-aminoisobutyric acid (Aib) to construct stereochemically rigid helices has been exemplified by crystallographic and spectroscopic studies of several apolar peptides, ranging in length from seven to sixteen residues. The problem of linker design in elaborating alpha,alpha motifs has been considered. Analysis of protein crystal structure data provides a guide to choosing linking sequences. Attempts at constructing linked helical motifs using linking Gly-Pro segments have been described. The use of flexible linkers, like epsilon-aminocaproic acid has been examined and the crystallographic and solution state analysis of a linked helix motif has been presented. The use of bulky sidechain modifications on a helical scaffold, as a means of generating putative binding sites has been exemplified by a crystal structure of a peptide packed in a parallel zipper arrangement.
Resumo:
This paper describes an algorithm for constructing the solid model (boundary representation) from pout data measured from the faces of the object. The poznt data is assumed to be clustered for each face. This algorithm does not require any compuiier model of the part to exist and does not require any topological infarmation about the part to be input by the user. The property that a convex solid can be constructed uniquely from geometric input alone is utilized in the current work. Any object can be represented a5 a combznatzon of convex solids. The proposed algorithm attempts to construct convex polyhedra from the given input. The polyhedra so obtained are then checked against the input data for containment and those polyhedra, that satisfy this check, are combined (using boolean union operation) to realise the solid model. Results of implementation are presented.
Resumo:
Stress wave characteristics are drastically altered by joints and other inhomogenities. This paper addresses the effect of an open joint on stress wave transmission. An elastodynamic analysis is developed to supplement and explain some recent observations by Fourney and Dick(1995) on open as well as filled joints. The analytical model developed here assuming spherical symmetry can be extended to filled joints between dissimilar media, but results are presented only for open joints separating identical materials. As a special case, stress wave transmission across a joint with no gap is also addressed.
Resumo:
Mechanical fasteners introduce structural weakness, still they are an essential constituent of most structures as they permit interchangeability of parts and flexible construction programs; Variable temperature operations of Aerospace and Nuclear structures make it imperative to investigate the thermoelastic behaviour of joints. This paper explores analytically similar mechanical and thermal parameters to generalise the thermomechanical behaviour of a pin joint in an isotropic Sheet for a class of configurations. This generalization enables virtually direct application of existing information regarding joints under pure mechanical loading to joints subjected to combined thermomechanical loading, thus reducing the efforts of both the analyst and the designer by an order of magnitude. Copyright (C) 1996 Published by Elsevier Science Ltd.