12 resultados para intermittent grazing
em Indian Institute of Science - Bangalore - Índia
Resumo:
Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.
Resumo:
Dendrocalamus strictus and Bambusa arundinacea are monocarpic, gregariously flowering species of bamboo, common in the deciduous forests of the State of Karnataka in India. Their populations have significantly declined, especially since the last flowering. This decline parelleis increasing incidence of grazing, fire and extraction in recent decades. Results of an experiment in which the intensities of grazing and fire were varied, indicate that while grazing significantly depresses the survival of seedlings and the recruitment of new eulms of bamboo clumps, fire appeared to enhance seedling survival, presumably by reducing competition of lass fire-resistant species. New shoots of bamboo are destroyed by insects and a variety of herbivorous mammals. In areas of intense herbivore pressure, a bamboo clump initiates the production of a much larger number of new culrm, but results in many fewer and shorter intact culms. Extraction renders the new shoots more susceptible to herbivore pressure by removal of the protective covering of branches at the base of a bamboo clump. Hence, regular and extensive extraction by the paper mills in conjuction with intense grazing pressure strongly depresses the addition of new culms to bamboo clumps. Regulation of grazing in the forest by domestic livestock along with maintenance of the cover at the base of the clumps by extracting the culms at a higher level should reduce the rate of decline of the bamboo stocks.
Resumo:
We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distributions are observed. Scaling relations between the exponents are derived which show that the exponents corresponding to large values of event sizes and durations are completely determined by those for small values. Th scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model acoustic emission signals among multitude of possibilities of the peel front configurations.
Resumo:
The moist tropical forests of the Western Ghats of India are pockmarked with savanna-grasslands created and managed by local agricultural communities. A sample of such savanna-grasslands with differing growing conditions was studied in terms of peak above-ground biomass, monthly growth, and cumulative production under different clipping treatments. The herblayer was found to be dominated by perennial C4 grasses, with Eulalia trispicata, Arundinella metzii and Themeda triandra being common to all sites. Peak biomass ranged between 3.3-5.9 t/ha at sites most favourable for grass production. Across these sites, peak biomass was found to be inversely related to the number of rainy days during the growing season, suggesting that growth may be light-limited. This hypothesis is supported by the observation that growth is most rapid immediately after the easing of the monsoon. Single clips early in the growing season had no negative or a slightly positive effect on production, but mid-season single clips or continuous frequent clipping reduced production by as much as 40%. The results suggest that, while indiscriminate grazing may certainly be deleterious, it is possible to obtain sustained high yields from forest lands managed for grass production without totally excluding grazing.
Resumo:
Optimal preventive maintenance policies, for a machine subject to deterioration with age and intermittent breakdowns and repairs, are derived using optimal control theory. The optimal policies are shown to be of bang-bang nature. The extension to the case when there are a large number of identical machines and several repairmen in the system is considered next. This model takes into account the waiting line formed at the repair facility and establishes a link between this problem and the classical ``repairmen problem.''
Resumo:
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.
Resumo:
We present a systematic investigation of morphological transitions in poly vinylacetate Langmuir monolayers. On compression, the polymer monolayer is converted to a continuous membrane with a thickness of similar to 2-3 nm. Above a certain surface concentration the monolayer, on water, undergoes a morphological transition-buckling, leading to formation of striped patterns of period of lambda(b)similar to 160 nm, as determined from in situ grazing incidence small angle x-ray scattering measurements. The obtained value is much smaller than what has been typically observed for Langmuir monolayers on water or thin films on soft substrates. Using existing theories for buckling of fluidlike films on fluid substrates, we obtain very low values of bending rigidity and Young's modulus of the polymer monolayer compared to that observed earlier for lipid or polymeric monolayers. Since buckling in these monolayers occurs only above a certain surface concentration, we have looked at the possibility that the buckling in these films occurs due to changes in their mechanical properties under compression. Using the model of Huang and Suo of buckling of solidlike films on viscoelastic substrates, we find values of the mechanical properties, which are much closer to the bulk values but still significantly lower. Although the reduction could be along the lines of what has been observed earlier for ultrathin polymer film or surface layers of polymers, the possibility of micromechanical effects also determining the buckling in such polymer monolayers cannot be ruled out. We have provided possible explanation of the buckling of the poly vinylacetate monolayers in terms of the change in isothermal compression modulus with surface concentration.
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.