12 resultados para information representation

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An axis-parallel box in $b$-dimensional space is a Cartesian product $R_1 \times R_2 \times \cdots \times R_b$ where $R_i$ (for $1 \leq i \leq b$) is a closed interval of the form $[a_i, b_i]$ on the real line. For a graph $G$, its boxicity is the minimum dimension $b$, such that $G$ is representable as the intersection graph of (axis-parallel) boxes in $b$-dimensional space. The concept of boxicity finds application in various areas of research like ecology, operation research etc. Chandran, Francis and Sivadasan gave an $O(\Delta n^2 \ln^2 n)$ randomized algorithm to construct a box representation for any graph $G$ on $n$ vertices in $\lceil (\Delta + 2)\ln n \rceil$ dimensions, where $\Delta$ is the maximum degree of the graph. They also came up with a deterministic algorithm that runs in $O(n^4 \Delta )$ time. Here, we present an $O(n^2 \Delta^2 \ln n)$ deterministic algorithm that constructs the box representation for any graph in $\lceil (\Delta + 2)\ln n \rceil$ dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsoft Windows uses the notion of registry to store all configuration information. The registry entries have associations and dependencies. For example, the paths to executables may be relative to some home directories. The registry being designed with faster access as one of the objectives does not explicitly capture these relations. In this paper, we explore a representation that captures the dependencies more explicitly using shared and unifying variables. This representation, called mRegistry exploits the tree-structured hierarchical nature of the registry, is concept-based and obtained in multiple stages. mRegistry captures intra-block, inter-block and ancestor-children dependencies (all leaf entries of a parent key in a registry put together as an entity constitute a block thereby making the block as the only child of the parent). In addition, it learns the generalized concepts of dependencies in the form of rules. We show that mRegistry has several applications: fault diagnosis, prediction, comparison, compression etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present an information filtering agent called sharable instructable information filtering agent (SIIFA). It adopted the approach of sharable instructable agents. SIIFA provides comprehensible and flexible interaction to represent and filter the documents. The representation scheme in SIIFA is personalized. It, either fully or partly, can be shared among the users of the stream while not revealing their interests and can be easily edited. SIIFA is evaluated on the comp.ai.neural-nets Usent newsgroup documents and compared with the vector space method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location area planning problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use the simulated annealing with a new solution representation. In our method, we can automatically generate different number of location areas using Compact Index (CI) to obtain the optimal/best partitions. We compare the results obtained in our method with the earlier results available in literature. We show that our methodology is able to perform better than earlier methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.