54 resultados para information flow model
em Indian Institute of Science - Bangalore - Índia
Resumo:
Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.
Resumo:
Bisimulation-based information flow properties were introduced by Focardi and Gorrieri [1] as a way of specifying security properties for transition system models. These properties were shown to be decidable for finite-state systems. In this paper, we study the problem of verifying these properties for some well-known classes of infinite state systems. We show that all the properties are undecidable for each of these classes of systems.
Resumo:
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.
Resumo:
Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, , with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic ((g)) is equal to D/(D-1), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have = (g) for a recession event even when q and c do not remain constant. The modified GRFM suggests that is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events. Key Points The GRFM is reformulated for Horton-Strahler networks. The GRFM is modified by allowing its parameters to vary along streams. Sub-surface storage distribution controls recession flow characteristics.
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
Theoretical optimization studies of the performance of a combustion driven premixed two-phase flow gasdynamic laser are presented. The steady inviscid nonreacting quasi-one-dimensional two-phase flow model including appropriate finite rate vibrational kinetic rates has been used in the analysis. The analysis shows that the effect of the particles on the optimum performance of the two-phase laser is very small. The results are presented in graphical form. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Many novel computer architectures like array and multiprocessors which achieve high performance through the use of concurrency exploit variations of the von Neumann model of computation. The effective utilization of the machines makes special demands on programmers and their programming languages, such as the structuring of data into vectors or the partitioning of programs into concurrent processes. In comparison, the data flow model of computation demands only that the principle of structured programming be followed. A data flow program, often represented as a data flow graph, is a program that expresses a computation by indicating the data dependencies among operators. A data flow computer is a machine designed to take advantage of concurrency in data flow graphs by executing data independent operations in parallel. In this paper, we discuss the design of a high level language (DFL: Data Flow Language) suitable for data flow computers. Some sample procedures in DFL are presented. The implementation aspects have not been discussed in detail since there are no new problems encountered. The language DFL embodies the concepts of functional programming, but in appearance closely resembles Pascal. The language is a better vehicle than the data flow graph for expressing a parallel algorithm. The compiler has been implemented on a DEC 1090 system in Pascal.
Resumo:
Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons limultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
Implementation details of efficient schemes for lenient execution and concurrent execution of re-entrant routines in a data flow model have been discussed in this paper. The proposed schemes require no extra hardware support and utilise the existing hardware resources such as the Matching Unit and Memory Network Interface, effectively to achieve the above mentioned goals.
Resumo:
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Resumo:
The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.
Resumo:
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen. R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881-1887] is chosen to investigate H-2/N-2 jet flame supported by a vitiated coflow of products of lean H-2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CIVIC is applied. Simulations are carried out for different jet velocities and coflow temperatures (T-c) The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for T-c = 1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the Structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case. the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.