17 resultados para indirizzo :: 782 :: Progettazione aerospaziale
em Indian Institute of Science - Bangalore - Índia
Resumo:
The optimum conditions for the electrode position of cobalt were arrived at, from a study of the effect or variables on the planning characteristics of cobalt flu borate solutions.
Studies on crystalline complexes involving amino acids. V. The structure of L-serine-L-ascorbic acid
Resumo:
L-Serine-L-ascorbic acid, C3HTNOa. C6HsO6, a 1:1 complex between the amino acid serine and the vitamin ascorbic acid, crystallizes in the orthorhombic space group P2~2~2~ with four formula units in a cell of dimensions a = 5.335(3), b = 8.769(2), c = 25.782 (5) A. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.036 for 951 observed reflections. Both molecules are neutral in the structure. The conformation of the serine molecule is different from that observed in the crystal structures of L-serine, DL-serine and L-serine monohydrate. The enediol group in the ascorbic acid molecule is planar, whereas significant departures from planarity are observed in the lactone group. The conformation of this molecule is similar to that observed in arginine ascorbate. The unlike molecules aggregate into separate columns in the crystal structure. The columns are held together by hydrogen bonds. Among these, a pair of hydrogen bonds between the enediol group of ascorbic acid and the carboxylate group of serine provides a possible model for a specific interaction between ascorbic acid and a carboxylate ion.
Resumo:
The crystal and molecular structures of C ,,H,IN302 (I) and C14HIsN302 (II) have been determined by direct methods using three-dimensional X-ray diffractometer data. Crystals of (I) are orthorhombic, space group Pna21, with a = 14.662(6), b = 10.492(5), c = 7.375 (3)A, Z = 4, V = 1134.5 A 3, D O = 1.25 (by flotation), D e = 1.269 Mgm -a, g(MoKa) = 0.085 mm -1. Crystals of (II) are monoclinic, space group P21/a, with a = 7.886 (5), b = 22.011 (8), c = 8.100 (3) A, fl = 103.12 (5) °, Z = 4, V = 1369.2 A 3, D O = 1.23 (by flotation), D e = 1.255 Mg m -3, g(Mo Kct) = 0.080 mm -1. Least-squares full-matrix refinement based on 782 (I) and 1400 independent reflections (II) converged at R = 0.040 (I) and 0.042 (II). The effect of electron-withdrawing substituents on the geometry of the cyclopropane ring is discussed.
Resumo:
Experiments are carried out with air as the test gas to obtain the surface convective heating rate on a missile shaped body flying at hypersonic speeds. The effect of fins on the surface heating rates of missile frustum is also investigated. The tests are performed in a hypersonic shock tunnel at stagnation enthalpy of 2 MJ/kg and zero degree angle of attack. The experiments are conducted at flow Mach number of 5.75 and 8 with an effective test time of 1 ms. The measured stagnation-point heat-transfer data compares well with the theoretical value estimated using Fay and Riddell expression. The measured heat-transfer rate with fin configuration is slightly higher than that of model without fin. The normalized values of experimentally measured heat transfer rate and Stanton number compare well with the numerically estimated results. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.
Resumo:
C9H10ClNO2, Mol · wt = 199.69, monoclinic, C2/c, Z = 8, a = 15.782(2) Å, b = 3.958(1) Å, c = 29.448(2) Å, β = 92.08°, ν = 1838.35 Å3, ϱc = 1.443 g cm−3, ϱ0 = 1.438(2) g cm−3. The structure of (4-chloro-2-methylphenoxy) acetamide (2M4ClPA) was determined by direct methods and refined by full-matrix least-squares methods to R = 0.079. The molecules dimerize about a centre of symmetry and the N – H⋯O distance is = 2.909(3) Å.
Resumo:
Di-2-pyridylaminechloronitratocopper(II) hemihydrate, [CuCl(NO3)(C10H9N3)].0.5H2O, M(r) = 341.21, monoclinic, P2(1)/a, a = 7.382 (1), b = 21.494 (4), c = 8.032 (1) angstrom, beta = 94.26 (1)-degrees, V = 1270.9 angstrom 3, Z = 4, D(m) = 1.78, D(x) = 1.782 g cm-3, lambda(Mo K-alpha) = 0.7107 angstrom, mu(Mo K-alpha) = 19.47 cm-1, F(000) = 688. The structure was solved by the heavy-atom method and refined to a final R value of 0.034 for 2736 reflections collected at 294 K. The structure consists of polymeric [Cu(dipyam)Cl(NO3)] units bridged by a chloride ion.
Resumo:
Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
A lightning return stroke model for a downward flash is proposed. The model includes underlying physical phenomena governing return stroke evolution, namely, electric field due to charge distributed along the leader and cloud, transient enhancement of series channel conductance at the bridging regime, and the nonlinear variation of channel conductance, which supports the return stroke current evolution. Thermal effects of free burning arc at the stroke wave front and its impact on channel conductance are studied. A first-order arc model for determining the dynamic channel conductance along with a field-dependent conductivity for corona sheath is used in the model. The model predicts consistent current propagation along the channel with regard to current amplitude and return stroke velocity. The model is also capable of predicting the remote electromagnetic fields that are consistent with the experimental observations.
Resumo:
The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow-both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.
Resumo:
Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe2+ (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 mm), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe2+ only, H2O2 only, and ascorbate only. A live dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.