16 resultados para hypercube
em Indian Institute of Science - Bangalore - Índia
Resumo:
The Extended Hypercube is a new approach in multiprocessor architectures, which reduces the communication burden on the processor elements. We propose a scheme for implementing such an architecture using INMOS transputers as the processor and controller elements to achieve a very high computation to communication ratio.
Resumo:
In this paper we propose a novel technique to model and ana¿ lyze the performability of parallel and distributed architectures using GSPN-reward models.
Resumo:
Reduction of the execution time of a job through equitable distribution of work load among the processors in a distributed system is the goal of load balancing. Performance of static and dynamic load balancing algorithms for the extended hypercube, is discussed. Threshold algorithms are very well-known algorithms for dynamic load balancing in distributed systems. An extension of the threshold algorithm, called the multilevel threshold algorithm, has been proposed. The hierarchical interconnection network of the extended hypercube is suitable for implementing the proposed algorithm. The new algorithm has been implemented on a transputer-based system and the performance of the algorithm for an extended hypercube is compared with those for mesh and binary hypercube networks
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
The boxicity of a graph H, denoted by View the MathML source, is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in View the MathML source. In this paper we show that for a line graph G of a multigraph, View the MathML source, where Δ(G) denotes the maximum degree of G. Since G is a line graph, Δ(G)≤2(χ(G)−1), where χ(G) denotes the chromatic number of G, and therefore, View the MathML source. For the d-dimensional hypercube Qd, we prove that View the MathML source. The question of finding a nontrivial lower bound for View the MathML source was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795–5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once).
Resumo:
Polynomial chaos expansion (PCE) with Latin hypercube sampling (LHS) is employed for calculating the vibrational frequencies of an inviscid incompressible fluid partially filled in a rectangular tank with and without a baffle. Vibration frequencies of the coupled system are described through their projections on the PCE which uses orthogonal basis functions. PCE coefficients are evaluated using LHS. Convergence on the coefficient of variation is used to find the orthogonal polynomial basis function order which is employed in PCE. It is observed that the dispersion in the eigenvalues is more in the case of a rectangular tank with a baffle. The accuracy of the PCE method is verified with standard MCS results and is found to be more efficient.
Resumo:
A robust aeroelastic optimization is performed to minimize helicopter vibration with uncertainties in the design variables. Polynomial response surfaces and space-¯lling experimental designs are used to generate the surrogate model of aeroelastic analysis code. Aeroelastic simulations are performed at the sample inputs generated by Latin hypercube sampling. The response values which does not satisfy the frequency constraints are eliminated from the data for model ¯tting. This step increased the accuracy of response surface models in the feasible design space. It is found that the response surface models are able to capture the robust optimal regions of design space. The optimal designs show a reduction of 10 percent in the objective function comprising six vibratory hub loads and 1.5 to 80 percent reduction for the individual vibratory forces and moments. This study demonstrates that the second-order response surface models with space ¯lling-designs can be a favorable choice for computationally intensive robust aeroelastic optimization.
Resumo:
The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.