60 resultados para hydrated silica

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimeric and monomeric forms of the enzyme triosephosphate isomerase (TIM) from Plasmodium falciparum (Pf) have been detected under conditions of nanoflow by electrospray mass spectrometry. The dimer (M = 55 663 Da) exhibits a narrow charge state distribution with intense peaks limited to values of 18(+) to 21(+), maximal intensity being observed for charge states 19(+) and 20(+). A monomeric species with a charge state distribution ranging from 11(+) to 16(+) is also observed, which may be assigned to folded dissociated subunits. Complete dimer dissociation results under normal electrospray condition. The effects of solution pH and source temperature have been investigated. The observation of four distinct charge state distributions which may be assigned to a dimer, folded monomer, partially folded monomer and unfolded monomer is reported. Circular dichromism and fluorescence studies of Pf TIM at low pH support the retention of substantial secondary and tertiary structures. Satellite peaks in mass spectra corresponding to hydrated species are also observed and isotope shift upon deuteration is demonstrated. The analysis of all available independent crystal structures of Pf TIM and TIMs from other organisms permits identification of structurally conserved water molecules. Hydration observed in the dimer and folded monomeric forms in the gas phase may correspond to these conserved sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mr= 361.3, triclinic, P1, a = 6-239 (2), b=11.280(2), c=12-451(2)A, a=101.2 (1), B= 92.3 (1), 7=99.9(1)°, V=844.123 A3, Z=2, Dx= 1.42, D m = 1.42 (1) Mg m -3, n(Cu Ka) = 1.5418 ,A., g = 1-102 mm -1, F(000) = 376, T= 293 K. Final R = 0.064 for 2150 observed reflections. The niflumic acid anions consist essentially of three planar groupings, namely, two six-membered rings and a carboxylate group attached to one of them. The invariant common structural features observed in the crystal structures of fenamates, namely, the coplanarity of the carboxyl group and the six-membered ring bearing it, and the internal hydrogen bond between the carboxyl group and the imino N atom that bridges the two sixmembered rings, are retained in the complex. The amino N atom is gauche with respect to the terminal hydroxyl group in the ethanolamine cation. The complexation between the two molecules is achieved through ionic and hydrogen-bonded interactions involving the carboxylate group in niflumic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexation of alkali and alkaline earth metal ions with crown ethers is well known (1) and chemical and crystallographic studies have been carried out for number of complexes (2,3). The interaction of the metal with the crown ether depends on the nature of the cation and particularly on the basicity of the anion (4) , In this paper we report the crystal and molecular structure of a lithium picrate complex of benzo-15-crown-5, the first x-ray crystallographic study of a lithlum-crown system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice husk ash (about 95% silica) with known physical and chemical characteristics has been reacted with lime and water. The setting process for a lime-excess and a lime-deficient mixture has been investigated. The product of the reaction has been shown to be a calcium silicate hydrate, C-S-H(I)+ by a combination of thermal analysis, XRD and electron microscopy. Formation of C-S-H(I) accounts for the strength of lime-rice husk ash cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition characteristics of rice husk have been investigated by dynamic thermoanalytical techniques: DTA, TG, DTG and isothermal heating. The observed thermal behaviour is explained on the basis of a superposition of the decomposition of cellulose and lignin, which are the major organic constituents of rice husk. Morphological features of silica in husk as well as the ash are examined by scanning electron microscopy. Silica in the residual ash has been characterised by X-ray diffraction and infrared spectroscopy. Controlled thermal decomposition of rice husk has been shown to be a convenient method for the liberation of silica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young's modulus (E), suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton and fluorine NMR were investigated in the temperature range 90–425 °K in the hexahydrated fluorosilicates of Zn, Cu, Mn, Co, and Ni and in the tetrahydrated CuSiF6 to obtain information about the internal motions in these solids. Second moment transitions were observed at widely different temperatures for the different substances, and these are ascribed to the onset of reorientation of the M(H2O) and SiF octahedra. The correlation frequency and the potential barrier hindering the motion were calculated in all the cases. Apart from the narrowing taking place at higher temperatures, the Co salt showed a change in the line structure at 248 °K, where a phase transition was reported from magnetic susceptibility measurements. Studies on the single crystals of ZnSiF6 • 6H2O and NiSiF6 • 6H2O showed that there are three nonequivalent p-p vectors, and after the transition they all become equivalent, with the M(H2O) octahedron reorienting about the fourfold axes. ©1973 The American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton and fluorine NMR were investigated in the temperature range 90–425 °K in the hexahydrated fluorosilicates of Zn, Cu, Mn, Co, and Ni and in the tetrahydrated CuSiF6 to obtain information about the internal motions in these solids. Second moment transitions were observed at widely different temperatures for the different substances, and these are ascribed to the onset of reorientation of the M(H2O)62+ and SiF62- octahedra. The correlation frequency and the potential barrier hindering the motion were calculated in all the cases. Apart from the narrowing taking place at higher temperatures, the Co salt showed a change in the line structure at 248 °K, where a phase transition was reported from magnetic susceptibility measurements. Studies on the single crystals of ZnSiF6 · 6H2O and NiSiF6 · 6H2O showed that there are three nonequivalent p-p vectors, and after the transition they all become equivalent, with the M(H2O)62+ octahedron reorienting about the fourfold axes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the structure and function of hemoglobin (Hb) confined inside sol-gel template synthesized silica nanotubes (SNTs) have been discussed here. Immobilization of hemoglobin inside SNTs resulted in the enhancement of direct electron transfer during an electrochemical reaction. Extent of influence of nanoconfinement on protein activity is further probed via ligand binding and thermal stability studies. Electrochemical investigations show reversible binding of n-donor liquid ligands, such as pyridine and its derivatives, and predictive variation in their redox potentials suggests an absence of any adverse effect on the structure and function of Hb confined inside nanometer-sized channels of SNTs. Immobilization also resulted in enhanced thermal stability of Hb. The melting or denaturation temperature of Hb immobilized inside SNTs increase by approximately 4 degrees C as compared with that of free Hb in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica segregation at two grain junctions or in amorphous triple junction pockets can influence creep by altering the grain-boundary diffusion coefficient. Although the addition of silica to superplastic yttria-stabilized tetragonal zirconia enhances ductility, differences in reported creep parameters have limited critical identification of rate controlling mechanisms. The present study on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ with 0.39 or 3.9 wt% silica involved a detailed characterization of creep over a wide range of experimental conditions and also tracer diffusion measurements. The data broadly show transitions in creep stress exponents from n∼1 to ∼2 to ∼3 with a decrease in the stress. The data at high stresses are consistent with Coble diffusion creep, and creep at lower stresses is attributed to interface-controlled diffusion creep. Measurements indicated that silica does not have any significant influence on grain boundary or lattice diffusion, and this is consistent with the observation that 3YTZ and 3YTZ with 0.39% or 3.9% silica exhibit essentially identical creep behavior in the Coble creep regime. Silica influences the interface control process so that the transitions in stress exponents are pushed to lower stresses with an increase in silica content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica nanotubes (SNTs) have been demonstrated here as a versatile host for controlled drug delivery and biosensing. The sol-gel template synthesized SNTs have a slow rate of drug release. Application of an external stimulus in the form of ultrasound to or chemical functionalization of synthesized SNT results in higher yield of drug release as well as yield of drug release varying linearly with time. In case of controlled drug delivery triggered by ultrasound, drug yield as function of time is found to be heavily dependent on the ultrasound impulse protocol. Impulses of shorter duration (similar to 0.5 min) and shorter time intervals between successive impulses resulted in higher drug yields. Confinement of hemoglobin (Hb) inside nanometer sized channels of SNT does not have any detrimental effect on the native protein structure and function. Observance of significant enhancement in direct electron transfer of Hb makes the SNTs also promising for application in biosensors.