26 resultados para hybrid system
em Indian Institute of Science - Bangalore - Índia
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
This letter proposes the combination of a passive muffler and an active noise control system for the control of very high‐level noise in ducts used with large industrial fans and similar equipment. The analysis of such a hybrid system is presented making use of electroacoustic analogies and the transfer matrix method. It turns out that a passive muffler upstream of the input microphone can indeed lower the acoustic pressure and, hence, the power requirement of the auxiliary source. The parameter that needs to be optimized (or maximized) for this purpose is a certain velocity ratio that can readily be evaluated in a closed form, making it more or less straightforward to synthesize the configuration of an effective passive muffler to go with the active noise control system.
Resumo:
This paper discusses the potential of the hybrid rocket engine as a viable and attractive mode of propulsion for both space vehicles and missiles. Research and development work on this engine in other countries is presented and evaluated. The various advantages of a hybrid engine over solid and liquid engines and its problems are highlighted. It has been argued that because of the low technology needed in the development of the hybrid system, it constitutes a cost-and-time-effective propulsion system for several applications in space programmes as well as weapon systems. In support of this conclusion, experience on the developmental studies of a variable thrust 100 kg engine is presented. Some future possibilities for hybrid propulsion systems are cited.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).
Resumo:
This paper deals with the ergodic properties of hybrid systems modelled by diffusion processes with state-dependent switching. We investigate the sufficient conditions expressed in terms of the parameters of the underlying process which would ensure the existence of a unique invariant probability and stability in distribution of the flow. It turns out that the conditions would depend on certain averaging mechanisms over the states of the discrete component of the hybrid system. (C) 1999 Academic Press.
Resumo:
The discharge plasma-chemical hybrid process for NOinfinity removal from the flue gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by ac or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads; is used to approximately simulate the flue gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO2, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO2 will be totally converted to N-2 and Na-2 SO4 using Na-2 SO3. The ac packed-bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (similar to 100 ppm). When the engine load exceeds 50% (NO > 300 ppm) there was not much decrease in NO reduction and more or less all the reactors performed equally. The total operating cost of the plasma-chemical hybrid system becomes $4010/ton of NO, which is 1/3-1/5 of the conventional selective catalytic process.
Resumo:
An extension to a formal verification approach of hybrid systems is proposed to verify analog and mixed signal (AMS) designs. AMS designs can be formally modeled as hybrid systems and therefore lend themselves to the formal analysis and verification techniques applied to hybrid systems. The proposed approach employs simulation traces obtained from an actual design implementation of AMS circuit blocks (for example, in the form of SPICE netlists) to carry out formal analysis and verification. This enables the same platform used for formally validating an abstract model of an AMS design, to be also used for validating its different refinements and design implementation; thereby, providing a simple route to formal verification at different levels of implementation. The feasibility of the proposed approach is demonstrated with a case study based on a tunnel diode oscillator. Since the device characteristic of a tunnel diode is highly non-linear with a negative resistance region, dynamic behavior of circuits in which it is employed as an element is difficult to model, analyze and verify within a general hybrid system formal verification tool. In the case study presented the formal model and the proposed computational techniques have been incorporated into CheckMate, a formal verification tool based on MATLAB and Simulink-Stateflow Framework from MathWorks.
Resumo:
The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
Instability in conventional haptic rendering destroys the perception of rigid objects in virtual environments. Inherent limitations in the conventional haptic loop restrict the maximum stiffness that can be rendered. In this paper we present a method to render virtual walls that are much stiffer than those achieved by conventional techniques. By removing the conventional digital haptic loop and replacing it with a part-continuous and part-discrete time hybrid haptic loop, we were able to render stiffer walls. The control loop is implemented as a combinational logic circuit on an field-programmable gate array. We compared the performance of the conventional haptic loop and our hybrid haptic loop on the same haptic device, and present mathematical analysis to show the limit of stability of our device. Our hybrid method removes the computer-intensive haptic loop from the CPU-this can free a significant amount of resources that can be used for other purposes such as graphical rendering and physics modeling. It is our hope that, in the future, similar designs will lead to a haptics processing unit (HPU).
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dodecagonal (12-sided) space vector pulsewidth modulation (PWM) schemes are characterized by the complete absence of (6n +/- 1)th-order harmonics (for odd n) in the phase voltages, within the linear modulation range and beyond, including over-modulation. This paper presents a new topology suitable for the realization of such multilevel inverter schemes for induction motor (IM) drives, by cascading two-level inverters with flying-capacitor-inverter fed floating H-bridge cells. Now, any standard IM may be used to get the dodecagonal operation which hitherto was possible only with open-end winding IM. To minimize the current total harmonic distortion (THD), a strategy for synchronous PWM is also proposed. It is shown that the proposed method is capable of obtaining better THD figures, compared to conventional dodecagonal schemes. The topology and the PWM strategy are validated through analysis and subsequently verified experimentally.
Resumo:
One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.