45 resultados para hyaluronan synthase 2

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifn gamma to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifn gamma, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/ nitric oxide adduct (DETA/NO), and Nos2(-/-) mice identified Nitric oxide (NO) induced by Ifn gamma as a key regulator of aggregation of APECs. Further studies with Nos2(-/-) APECs revealed that some Ifn. responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifn gamma and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifn gamma contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifn gamma and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or ``group behavior'' of APECs are discussed in the context of host resistance to infectious organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the genomic sequences of Escherichia coli and Salmonella typhimurium has revealed the presence of several homologues of the well studied citrate synthase (CS). One of these homologues has been shown to code for 2-methylcitrate synthase (2-MCS) activity. 2-MCS catalyzes one of the steps in the 2-methylcitric acid cycle found in these organisms for the degradation of propionate to pyruvate and succinate. In the present work, the gene coding for 2-MCS from S. typhimurium (StPrpC) was cloned in pRSET-C vector and overexpressed in E. coli. The protein was purified to homogeneity using Ni-NTA affinity chromatography. The purified protein was crystallized using the microbatch-under-oil method. The StPrpC crystals diffracted X-rays to 2.4 A resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 92.068, b = 118.159, c = 120.659 A, alpha = 60.84, beta = 67.77, gamma = 81.92 degrees. Computation of rotation functions using the X-ray diffraction data shows that the protein is likely to be a decamer of identical subunits, unlike CSs, which are dimers or hexamers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Methylcitric acid (2-MCA) cycle is one of the well studied pathways for the utilization of propionate as a source of carbon and energy in bacteria such as Salmonella typhimurium and Escherichia coli. 2-Methylcitrate synthase (2-MCS) catalyzes the conversion of oxaloacetate and propionyl-CoA to 2-methylcitrate and CoA in the second step of 2-MCA cycle. Here, we report the X-ray crystal structure of S. typhimurium 2-MCS (StPrpC) at 2.4 A resolution and its functional characterization. StPrpC was found to utilize propionyl-CoA more efficiently than acetyl-CoA or butyryl-CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. In the triclinic P1 cell, StPrpC molecules were organized as decamers composed of five identical dimer units. In solution, StPrpC was in a dimeric form at low concentrations and was converted to larger oligomers at higher concentrations. CSs are usually dimeric proteins. In Gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coil CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural comparison with the ligand free and bound states of CSs showed that StPrpC is in a nearly closed conformation despite the absence of bound ligands. It was found that the Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might determine the specificities for acyl-CoAs of these enzymes. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella typhimurium causes an invasive disease in mice that has similarities to human typhoid. A type III protein secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is essential for virulence in mice, as well as survival and multiplication within macrophages. Reactive nitrogen intermediates (RNI) synthesized by inducible nitric oxide synthase (iNOS) are involved in the control of intracellular pathogens, including S. typhimurium. We studied the effect of Salmonella infection on iNOS activity in macrophages. Immunofluorescence microscopy demonstrated efficient colocalization of iNOS with bacteria deficient in SPI2 but not wild-type Salmonella, and suggests that the SPI2 system interferes with the localization of iNOS and Salmonella. Furthermore, localization of nitrotyrosine residues in the proximity was observed for SPI2 mutant strains but not wild-type Salmonella, indicating that peroxynitrite, a potent antimicrobial compound, is excluded from Salmonella-containing vacuoles by action of SPI2. Altered colocalization of iNOS with intracellular Salmonella required the function of the SPI2-encoded type III secretion system, but not of an individual "Salmonella translocated effector." Inhibition of iNOS increased intracellular proliferation of SPI2 mutant bacteria and, to a lesser extent, of wild-type Salmonella. The defect in systemic infection of a SPI2 mutant strain was partially restored in iNOS(-/-) mice. In addition to various strategies to detoxify RNI or repair damage due to RNI, avoidance of colocalization with RNI is important in adaptation of a pathogen to an intracellular life style.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that protein crystallizability can be influenced by site-directed mutagenesis of residues on the molecular surface of proteins, indicating that the intermolecular interactions in crystal-packing regions may play a crucial role in the structural regularity at atomic resolution of protein crystals. Here, a systematic examination was made of the improvement in the diffraction resolution of protein crystals on introducing a single mutation of a crystal-packing residue in order to provide more favourable packing interactions, using diphthine synthase from Pyrococcus horikoshii OT3 as a model system. All of a total of 21 designed mutants at 13 different crystal-packing residues yielded almost isomorphous crystals from the same crystallization conditions as those used for the wild-type crystals, which diffracted X-rays to 2.1 angstrom resolution. Of the 21 mutants, eight provided crystals with an improved resolution of 1.8 angstrom or better. Thus, it has been clarified that crystal quality can be improved by introducing a suitable single mutation of a crystal-packing residue. In the improved crystals, more intimate crystal-packing interactions than those in the wild-type crystal are observed. Notably, the mutants K49R and T146R yielded crystals with outstandingly improved resolutions of 1.5 and 1.6 angstrom, respectively, in which a large-scale rearrangement of packing interactions was unexpectedly observed despite the retention of the same isomorphous crystal form. In contrast, the mutants that provided results that were in good agreement with the designed putative structures tended to achieve only moderate improvements in resolution of up to 1.75 angstrom. These results suggest a difficulty in the rational prediction of highly effective mutations in crystal engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymidylate synthase (TS), a dimeric enzyme, forms large soluble aggregates at concentrations of urea (3.3-5 M), well below that required for complete denaturation, as established by fluorescence and size-exclusion chromatography. In contrast to the wild-type enzyme, an engineered mutant of TS (T155C/E188C/C244T), TSMox, in which two subunits are crosslinked by disulfide bridges between residues 155-188' and 188-155', does not show this behavior. Aggregation behavior is restored upon disulfide bond reduction in the mutant protein, indicating the involvement of interface segments in forming soluble associated species. Intermolecular disulfide crosslinking has been used as a probe to investigate the formation of larger non-native aggregates. The studies argue for the formation of large multimeric species via a sticky patch of polypeptide from the dimer interface region that becomes exposed on partial unfolding. Covalent reinforcement of relatively fragile protein-protein interfaces may be a useful strategy in minimizing aggregation of non-native structures in multimeric proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indispensability of biotin for crucial processes like lipid biosynthesis coupled to the absence of the biotin biosynthesis pathway in humans make the enzymes of this pathway, attractive targets for development of novel drugs against numerous pathogens including M. tuberculosis. We report the spectral and kinetic characterization of the Mycobacterium tuberculosis 7,8-Diamino-pelargonic acid (DAPA) synthase, the second enzyme of the biotin biosynthesis pathway. In contrast to the E. coli enzyme, no quinonoid intermediate was detected during the steady state reaction between the enzyme and S-adenosyl-L-methionine (SAM). The second order rate constant for this half of the reaction was determined to be 1.75 +/- 0.11 M-1 s(-1). The K-m values for 7-keto-8-aminopelargonic acid (KAPA) and SAM are 2.83 mu M and 308.28 mu M, respectively whereas the V-max and k(cat) values for the enzyme are 0.02074 mu moles/min/ml and 0.003 s(-1), respectively. Our initial studies pave the way for further detailed mechanistic and kinetic characterization of the enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enzyme which catalyzes the oxidative conversion of o-aminophenol to 2-amino-3-H-isophenoxazin-3-one has been purified 396-fold by using standard fractionation procedures. The enzyme is specific for o-aminophenol and has pH and temperature optima at 6.2 and 40 °, respectively. It is insensitive to metal chelating agents but is inhibited by several reducing substances. There is no cofactor or metal ion requirement for the reaction. A competitive type of inhibition was observed with structural analogs such as anthranilic acid and 3-hydroxyanthranilic acid. There are no free sulfhydryl groups in the enzyme, but preincubation of the enzyme with substrate or substrate analogs resulted in the liberation of titratable free sulfhydryl groups. The mechanism of biosynthesis of isophenoxazine ring is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enzyme which catalyses the oxidation of o-aminophenol to o-quinoneimine and the subsequent condensation of o-aminophenol and o-quinoneime to give isophenoxazine has been isolated from the leaves of Tecoma stans. The reaction had an optimum pH of 6.2 and an optimum temperature of 45°. Heavy-metal ions like Hg2+, Co2+, Mg2+, Fe3+, were inhibitory. Mn2+ activated the reaction to about 40%. The reaction requires intact sulfhydryl groups. A study of the coenzyme requirements showed that isophenoxazine synthase (o-aminophenol: O2 oxidoreductase) is a flavoprotein requiring FAD for maximum activity. Stoichiometric studies showed that 2 moles of o-aminophenol gave 1 mole of isophhenoxazine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution structure of IlvN, the regulatory subunit of Escherichia coil acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule. The ensemble of 20 low-energy structures shows a backbone root-mean-square deviation of 0.73 +/- 0.13 angstrom and a root-mean-square deviation of 1.16 +/- 0.13 angstrom for all heavy atoms. Furthermore, more than 98% of the backbone phi and psi dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map, which is indicative of the fact that the structures are of high stereochemical quality. Each protomer exhibits a beta alpha beta beta alpha beta alpha topology that is a characteristic feature of the ACT domain seen in metabolic enzymes. In the valine-bound form, IlvN exists apparently as a single conformer. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR time scale. Thus, a large shift in the conformational equilibrium is observed upon going from the free form to the bound form. The structure of the valine-bound form of IlvN was found to be similar to that of the ACT domain of the unliganded form of IlvH. Comparisons of the structures of the unliganded forms of these proteins suggest significant differences. The structural and conformational properties of IlvN determined here have allowed a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.